Journal of Computational Electronics

, Volume 5, Issue 4, pp 415–418 | Cite as

Global Modeling of high frequency devices

  • J. S. Ayubi-Moak
  • S. M. Goodnick
  • M. Saraniti


In this work, we utilize the Finite-Difference Time Domain (FDTD) Method coupled to a full-band, Cellular Monte Carlo (CMC) simulator to model the behavior of high-frequency devices. Replacing the quasi-static Poisson solver with a more exact electromagnetic (EM) solver provides a full-wave solution of Maxwell’s equations, resulting in a more accurate model for determining the high-frequency response of microwave transistors.


Global modeling Monte Carlo CMC Full-wave FDTD Particle-based simulator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayubi-Moak, J.S. et al.: Coupling Maxwell’s equations to full-band particle-based simulators. Journal of Computational Electronics 2, 183 (2003)CrossRefGoogle Scholar
  2. 2.
    Branlard J. et al.: Frequency analysis of semiconductor devices using full-band Cellular Monte Carlo simulations. Monte Carlo Methods and Applications, Special Issue, (2004)Google Scholar
  3. 3.
    Bérenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Sheen, D.M., Ali, S.M.: Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits. IEEE MTT 38(7), 849 (1990)CrossRefGoogle Scholar
  5. 5.
    Liu, G., Gedney, S.D.: Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method. IEEE Microwave Guided Wave. Lett. 9, 441 (1999)CrossRefGoogle Scholar
  6. 6.
    Saraniti, M., Goodnick, S.M.: Hybrid full-band cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Trans. Elect. Dev. 47(10), 1909 (2000)CrossRefGoogle Scholar
  7. 7.
    Kometer, K. et al.: Lattice-gas cellular-automaton method for semiclassical transport in semiconductors. Phys. Rev. B 46(3), 1382 (1992)CrossRefGoogle Scholar
  8. 8.
    Yee, K.S.: Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propagat. 14, 302 (1966)CrossRefGoogle Scholar
  9. 9.
    Courant, R. et al.: On the partial difference equations of mathematical physics. IBM Journal, 215 (1967)Google Scholar
  10. 10.
    Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE MTT 47(10), 2003 (1999)CrossRefGoogle Scholar
  11. 11.
    Zheng, F. et al.: A finite-difference time-domain method without the courant stability conditions. IEEE Microwave Guided Wave Lett. 9(11), 441 (1999)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • J. S. Ayubi-Moak
    • 1
  • S. M. Goodnick
    • 1
  • M. Saraniti
    • 2
  1. 1.Department of Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Electrical and Computer EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations