Skip to main content
Log in

Global Modeling of high frequency devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, we utilize the Finite-Difference Time Domain (FDTD) Method coupled to a full-band, Cellular Monte Carlo (CMC) simulator to model the behavior of high-frequency devices. Replacing the quasi-static Poisson solver with a more exact electromagnetic (EM) solver provides a full-wave solution of Maxwell’s equations, resulting in a more accurate model for determining the high-frequency response of microwave transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayubi-Moak, J.S. et al.: Coupling Maxwell’s equations to full-band particle-based simulators. Journal of Computational Electronics 2, 183 (2003)

    Article  Google Scholar 

  2. Branlard J. et al.: Frequency analysis of semiconductor devices using full-band Cellular Monte Carlo simulations. Monte Carlo Methods and Applications, Special Issue, (2004)

  3. Bérenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sheen, D.M., Ali, S.M.: Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits. IEEE MTT 38(7), 849 (1990)

    Article  Google Scholar 

  5. Liu, G., Gedney, S.D.: Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method. IEEE Microwave Guided Wave. Lett. 9, 441 (1999)

    Article  Google Scholar 

  6. Saraniti, M., Goodnick, S.M.: Hybrid full-band cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Trans. Elect. Dev. 47(10), 1909 (2000)

    Article  Google Scholar 

  7. Kometer, K. et al.: Lattice-gas cellular-automaton method for semiclassical transport in semiconductors. Phys. Rev. B 46(3), 1382 (1992)

    Article  Google Scholar 

  8. Yee, K.S.: Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propagat. 14, 302 (1966)

    Article  Google Scholar 

  9. Courant, R. et al.: On the partial difference equations of mathematical physics. IBM Journal, 215 (1967)

  10. Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE MTT 47(10), 2003 (1999)

    Article  Google Scholar 

  11. Zheng, F. et al.: A finite-difference time-domain method without the courant stability conditions. IEEE Microwave Guided Wave Lett. 9(11), 441 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Ayubi-Moak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayubi-Moak, J.S., Goodnick, S.M. & Saraniti, M. Global Modeling of high frequency devices. J Comput Electron 5, 415–418 (2006). https://doi.org/10.1007/s10825-006-0028-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-0028-3

Keywords

Navigation