Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 439–442 | Cite as

Numerical Simulation for Direct Tunneling Current in Poly-Si-Gate MOS Capacitors



We have numerically simulated gate tunneling current in MOS capacitors. Price has demonstrated that the Gamow formulation can be applied to analysis of the escape of electrons from channel into gate in MOSFETs [P.J. Price, Appl. Phys. Lett., 82, 2080 (2003)]. We have integrated the Gamow method into a Schrödinger-Poisson solver for metal-gate and poly-Si-gate n-type MOS capacitors. The numerical results of the tunneling current are then compared with experimental results.


gate tunneling current Gamow method MOSFET 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Rana, S. Tiwai, and D.A. Buchanan, “Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides,” Appl. Phys. Lett., 69, 1104 (1996).CrossRefGoogle Scholar
  2. 2.
    S.-H. Lo, D.A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Devices Lett., 18, 209 (1997).CrossRefGoogle Scholar
  3. 3.
    S.-H. Lo, D.A. Buchanan, and Y. Taur, “Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides,” IBM J. Res. & Dev., 43, 327 (1999).Google Scholar
  4. 4.
    A.D. Serra, A. Abramo, P. Palestri, L. Selmi, and F. Widdershoven, “Closed- and open-boundary models for gate-current calculation in n-MOSFETs,” IEEE Trans. Electron Devices, 48, 1811 (2001).CrossRefGoogle Scholar
  5. 5.
    A. Bohm, M. Gadella, and G. Bruce Mainland, “Gamow vectors and decaying states,” Am. J. Phys., 57, 1103 (1989).CrossRefGoogle Scholar
  6. 6.
    P.J. Price, “Electron tunneling from channel to gate,” Appl. Phys. Lett., 82, 2080 (2003).CrossRefGoogle Scholar
  7. 7.
    P.J. Price, “A tunneling formalism,” Semicond. Sci. Technol., 19, S241 (2004).CrossRefGoogle Scholar
  8. 8.
    F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev., 5, 4891 (1972).CrossRefGoogle Scholar
  9. 9.
    F. Stern and W.E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev., 163, 816 (1967).CrossRefGoogle Scholar
  10. 10.
    N. Yang, W.K. Henson, J.R. Hauser, and S.K. Banerjee, “Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices,” IEEE Trans. Electron Devices, 46, 1464 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Department of Electronic EngineeringOsaka UniversitySuita CityJapan

Personalised recommendations