Advertisement

Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 337–340 | Cite as

Modeling of FinFET: 3D MC Simulation Using FMM and Unintentional Doping Effects on Device Operation

  • Hasanur R. Khan
  • Dragica Vasileska
  • S. S. Ahmed
  • C. Ringhofer
  • Clemens Heitzinger
Article

Abstract

Novel device concepts such as dual gate SOI, Ultra thin body SOI, FinFETs, etc., have emerged as a solution to the ultimate scaling limits of conventional bulk MOSFETs. These novel devices suppress some of the Short Channel Effects (SCE) efficiently, but at the same time more physics based modeling is required to investigate device operation. In this paper, we use semi-classical 3D Monte Carlo device simulator to investigate important issues in the operation of FinFETs. Fast Multipole Method (FMM) has been integrated with the EMC scheme to replace the time consuming Poisson equation solver. Effect of unintentional doping for different device dimensions has been investigated. Impurities at the source side of the channel have most significant impact on the device performance.

Keywords

FinFET unintentional doping FMM 3D Monte Carlo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SIA Technology Roadmap for Semiconductors, 2003 (http://public.itrs.net/).
  2. 2.
    M. Lundstrom, Fundamental of Carrier Transport (Cambridge University press, October 2000).Google Scholar
  3. 3.
    C.H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A comparative study of advanced MOSFET concepts,” IEEE Trans. Electron Devices, 43, 1742 (1996).CrossRefGoogle Scholar
  4. 4.
    H.S. Wong, K. Chan, and Y. Taur, “Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel,” IEDM Tech. Dig, 427 (1997).Google Scholar
  5. 5.
    D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. king, J. Boker, and C. Hu, “A folded-channel MOSFET for deep-sub-tenth micron era,” IEDM Tech. Dig., 1032 (1998).Google Scholar
  6. 6.
    D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. king, J. Boker, and C. Hu, “FinFET-A self-aligned double gate MOSFET scalable beyond 20 nm,” IEEE Trans. Electron Devices, 47, 2320 (2000).CrossRefGoogle Scholar
  7. 7.
    X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm FinFET: PMOS,” IEDM Tech. Dig., 67 (1999).Google Scholar
  8. 8.
    C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Modern Phys., 55, 645 (1983).CrossRefGoogle Scholar
  9. 9.
    H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algorithm in three dimensions,” Journal of Computational Physics, 155, 468 (1999).CrossRefGoogle Scholar
  10. 10.
    MadMAx Optics Inc, “FMMpart3D library file”.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Hasanur R. Khan
    • 1
  • Dragica Vasileska
    • 1
  • S. S. Ahmed
    • 1
  • C. Ringhofer
    • 2
  • Clemens Heitzinger
    • 2
  1. 1.Department of Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations