Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 235–238 | Cite as

Accurate Deterministic Numerical Simulation of p-n Junctions

  • P. González
  • A. Godoy
  • F. Gámiz
  • J. A. Carrillo


In this work some variants of a deterministic simulation of p-n junctions are considered. From a mathematical point of view, this will be done by means of the numerical resolution of the corresponding Boltzmann transport’s equations (BTE’s): one for the electrons and another one for the holes, coupled by the Poisson equation for the potential, from which the electric field is calculated. In order to improve the efficiency of the Finite-Difference Weighted Essentially Non-Oscillatory (FD-WENO) code, we will consider the two transport equations in the depletion zone and only the corresponding BTE equation for the majority carrier in each one of the neutral zones, instead of solving the two BTE’s in the entire length of the device.


Boltzmann-Poisson system bipolar devices p-n junctions FD-WENO methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Carrillo, I.M. Gamba, A. Majorana, and C.W. Shu, “A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices. Performance and comparisons with Monte Carlo methods,” Journal of Computational Physics, 184, 498 (2003).CrossRefGoogle Scholar
  2. 2.
    P. González, J.A Carrillo, and F. Gámiz, “Deterministic numerical simulation of 1d kinetic descriptions of bipolar electron devices,” Work presented at the SCEE 2004 Workshop (being reviewed) by Accepted for publication in Series Mathematics in Industry (Springer, 2005).Google Scholar
  3. 3.
    A. Majorana and R.M. Pidatella, “A finite difference scheme solving the Boltzmann-Poisson System for Semiconductor Devices,” Journal of Computational Physics, 174, 649 (2001).CrossRefGoogle Scholar
  4. 4.
    P.A. Markowich, C.A. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer-Verlag, Wien, Austria, 1990).Google Scholar
  5. 5.
    S.M. Sze, Semiconductor Devices (John Wiley & Sons, AT&T Bell Laboratories, Murray Hill-New Jersey, 1985).Google Scholar
  6. 6.
    K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices (Artech House, Boston, 1993).Google Scholar
  7. 7.
    B. Van Zeghbroeck, “Principles of semiconductor devices,” (2004).

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • P. González
    • 1
  • A. Godoy
    • 2
  • F. Gámiz
    • 2
  • J. A. Carrillo
    • 3
  1. 1.Dpto. de Matemática AplicadaUniv. de GranadaGranadaSpain
  2. 2.Dpto. de ElectrónicaUniv. de GranadaGranadaSpain
  3. 3.ICREA-Departement de MatemàtiquesUniv. Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations