Journal of Computational Electronics

, Volume 3, Issue 2, pp 117–133 | Cite as

A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids



In this work we propose a force-field scheme for the self-consistent particle-based simulation of electrolytic solutions. Within this approach, the electrostatic interactions are modeled with a particle-particle-particle-mesh (P3M) algorithm, where the long-range components of the force are resolved in real space with an iterative multi-grid Poisson solver. Simulations are performed where the solute ions are treated as Brownian particles governed by the full Langevin equation, while the effects of the solvent are accounted for with the implicit solvent model. The main motivation of this work is to efficiently extend the modeling capability of the standard particle-based approaches to liquid systems characterized by a spatially inhomogeneous charge distribution and realistic, non-periodic boundary conditions. Examples of such systems are large polymer chains, biological membranes, and ion channels.


ionic solutions Brownian dynamics molecular dynamics force field ion channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Hille, Ionic Channels of Excitables Membranes (Sinauer, Massachusetts, 3rd edition, 2001).Google Scholar
  2. 2.
    E. Neher and B. Sakmann, “Single-Channel currents recorded from membrane of denervated frog muscle fibers,” Nature, 260, 799 (1976).PubMedGoogle Scholar
  3. 3.
    F.M. Ashcroft, Ion channels and Disease (Academic Press, S. Diego, CA, 2000).Google Scholar
  4. 4.
    M. Goryll, S. Wilk, G.M. Laws, T. Thornton, S. Goodnick, M. Saraniti, J. Tang, and R.S. Eisenberg, “Silicon-based ion channel sensor,” Superlattices and Microstructures 2004 (in press).Google Scholar
  5. 5.
    S.M. Sze, Physics of Semiconductor Devices (2nd edition, John Wiley & Sons, New York, 1981).Google Scholar
  6. 6.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors, chapter “Process integration, devices, and structures,” (International SEMATECH, Austin - TX, 1999) p. 83.Google Scholar
  7. 7.
    G. Lamm, The Poisson-Boltzmann Equation, vol. 19 of Reviews in Computational Chemistry (VHC Publishers, 2003) chap. 4, p. 147.Google Scholar
  8. 8.
    R.S. Eisenberg, M.M. Klosek, and Z. Schuss, “Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations,” Journal of Chemical Physics, 102(4), 1767 (1995).CrossRefGoogle Scholar
  9. 9.
    S.-H. Chung, T.W. Allen, and S. Kuyucak, “Modeling diverse range of potassium channels with Brownian dynamics,” Biophysical Journal, 83(1), 263 (2002).PubMedGoogle Scholar
  10. 10.
    W. Im and B. Roux, “Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution,” Journal of Molecular Biology, 319(5), 1177 (2002).CrossRefPubMedGoogle Scholar
  11. 11.
    D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, CA, 2000).Google Scholar
  12. 12.
    C.L. Brooks, B.M. Pettitt, and M. Karplus, “Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids,” Journal of Chemical Physics, 83(11), 5897 (1985).CrossRefGoogle Scholar
  13. 13.
    L. Perera, U. Essmann, and M.L. Berkowitz, “Effect of the treatment of long-range forces on the dynamics of ions in aqueous solutions,” Journal of Chemical Physics, 102(1) (1995).Google Scholar
  14. 14.
    J.D. Jackson, Classical Electrodynamics (2nd edition John Wiley & Sons, New York 1975).Google Scholar
  15. 15.
    R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles. (Adam Hilger, Bristol, 1988).Google Scholar
  16. 16.
    W. Hackbush, {Multi-Grid Methods and Applications} (Springer-Verlag, Berlin, 1985).Google Scholar
  17. 17.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt–Sauders International Editions, Tokyo, 1981).Google Scholar
  18. 18.
    M.V. Fischetti and S.E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Physical Review B, 38(14), 9721 (1988).CrossRefGoogle Scholar
  19. 19.
    W.J. Gross, D. Vasileska, and D.K. Ferry, “Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics,” IEEE Transactions on Electron Devices, 47(10), 1891 (2000).CrossRefGoogle Scholar
  20. 20.
    C.J. Wordelman and U. Ravaioli, “Integration of a particle-particle-particle-mesh algorithm with the ensamble Monte Carlo method for the simulation of ultra- small semiconductor devices,” IEEE Transaction on Electron Devices, 47(2), 410 (2000).CrossRefGoogle Scholar
  21. 21.
    A.R. Leach, Molecular Modeling. Principles and Applications, 2nd edition (Prentice Hall, Harlow, England, 2001).Google Scholar
  22. 22.
    P. Gibbon and G. Sutmann, “Long-range interactions in many-particle simulation,” in Quantum Simulations of Many-Body Systems: From Theory to Algorithms, Lecture Notes, edited by J. Grotendorst, D. Marx, and A. Muramatsu, vol. 10 of NIC, John von Neumann Institute for Computing, Jülich, Germany, 2002) p. 467.Google Scholar
  23. 23.
    P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Annalen der Physik, 64, 253 (1921).Google Scholar
  24. 24.
    D.R. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
  25. 25.
    A. Brandt, “Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, 31(138), 333 (1977).Google Scholar
  26. 26.
    M. Hoyles, S. Kuyucak, and S.-H. Chung, “Solutions of Poisson’s equation in channel-like geometries,” Computer Physics Communications, 115(1), 45 (1998).CrossRefMathSciNetGoogle Scholar
  27. 27.
    S.C. Li, M. Hoyles, S. Kuyucak, and S.-H. Chung, “Brownian dynamics study of ion transport in the vestibule of membrane channels,” Biophysical Journal, 74(1), 37 (1998).PubMedGoogle Scholar
  28. 28.
    W. Im, S. Seefeld, and B. Roux, “A grand canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels,” Biophysical Journal, 79(2), 788 (2000).PubMedGoogle Scholar
  29. 29.
    D.L. Ermak, “A computer simulation of charged particles in solution. I, “Technique and equilibrium properties,” Journal of Chemical Physics, 62(10), 4189 (1975).CrossRefGoogle Scholar
  30. 30.
    P. Turq, F. Lantelme, and H.L. Friedman, “Brownian dynamics: Its application to ionic solutions,” Journal of Chemical Physics, 66(7), 3039 (1977).CrossRefGoogle Scholar
  31. 31.
    M.A. Wilson, A. Pohrille, and L.R. Pratt, “Molecular dynamic test of the Brownian description of Na+ motion in water,” Journal of Chemical Physics, 83(11), 5832 (1985).CrossRefGoogle Scholar
  32. 32.
    K. Cooper, E. Jakobsson, and P. Wolynes., “The theory of ion transport through membrane channels,” Progress in Biophysis and Molecular Biology, 46(1), 51 (1985).CrossRefGoogle Scholar
  33. 33.
    E. Jakobsson and S.-W. Chiu, “Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels,” Biophysical Journal, 52(1), 33 (1987).PubMedGoogle Scholar
  34. 34.
    S. Bek and E. Jakobsson, “Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels, Biophysical Journal, 66(4), 1028, 1994.PubMedGoogle Scholar
  35. 35.
    S.-H. Chung, T.W. Allen, M. Hoyles, and S. Kuyucak, “Permeation of ions across the potassium channel: Brownian dynamics studies,” Biophysical Journal, 77(5), 2517 (1999).PubMedGoogle Scholar
  36. 36.
    S.-H. Chung, T.W. Allen, and S. Kuyucak, “Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations,” Biophysical Journal, 82(2), 628 (2002).PubMedGoogle Scholar
  37. 37.
    B. Corry, M. Hoyles, T.W. Allen, M. Walker, S. Kuyucak, and S.-H. Chung, “Reservoir boundaries in Brownian dynamics simulations of ion channels,” Biophysical Journal, 82(4), 1975 (2002).PubMedGoogle Scholar
  38. 38.
    C.R. Arokianathan, A. Asenov, and J.H. Davies, “An approach based on Brownian motion for the simulation of ultrasmall semiconductor devices,” Journal of Applied Physics, 81(1), 226 (1996).CrossRefGoogle Scholar
  39. 39.
    M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
  40. 40.
    F.O. Raineri, M.D. Wood, and H.L. Friedman, “Self-diffusion coefficients of ions in electrolyte solutions by nonequilibrium Brownian dynamics,” Journal of Chemical Physics, 92(1), 649 (1990).CrossRefGoogle Scholar
  41. 41.
    M. Canales and G. Sesé, “Generalized Langevin dynamics simulations of NaCl electrolyte solutions,” Journal of Chemical Physics, 109(14), 6004 (1998).CrossRefGoogle Scholar
  42. 42.
    M. Jarat, O. Bernard, P. Turq, and G.R. Kneller, “Transport coefficients of electrolyte solutions from Smart Brownian Dynamics simulations,” Journal of Chemical Physics, 110(16), 7993 (1999).CrossRefGoogle Scholar
  43. 43.
    S. Yang, H. Han, and S. Lee, “An efficient Brownian dynamics method for evaluating inertial dynamics effects on diffusion–influenced reactions,” Journal of Physical Chemistry B, 105 (25), 6017 (2001).CrossRefGoogle Scholar
  44. 44.
    J.F. Dufreche, M. Jardat, T. Olynyk, O. Bernard, and P. Turq, “Mutual diffusion coefficient of charged particles in the solvent fixed frame of reference from Brownian dynamics simulation,” Journal of Chemical Physics, 117(8), 3804 (2002).CrossRefGoogle Scholar
  45. 45.
    J.M.G. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions, Number 5 in Topics in Physical Chemistry (Springer, New York, 1998).Google Scholar
  46. 46.
    W.F. van Gunsteren and H.J.C. Berendsen, “Algorithms for Brownian dynamics,” Molecular Physics, 45(3), 637 (1982).Google Scholar
  47. 47.
    E. Barth and T. Schlick, “Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics,” Journal of Chemical Physics, 109(5), 1633 (1998).CrossRefGoogle Scholar
  48. 48.
    S.K. Gray, D.W. Noid, and B.G. Sumpter, “Sympletctic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods,” Journal of Chemical Physics, 101(5), 4062 (1994).CrossRefGoogle Scholar
  49. 49.
    L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical Review, 159(1), 159 (1967).CrossRefGoogle Scholar
  50. 50.
    T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, vol. 21 of Interdisciplinary Applied Mathematics (Springer, New York, 2000).Google Scholar
  51. 51.
    R.S. Varga, “Factorization and normalized iterative methods,” in Boundary Problems in Differential Equations, edited by R. E. Langer (University of Wisconsin Press, Madison, Wisconsin, 1960) p. 121.Google Scholar
  52. 52.
    D.M. Young, Iterative Solution of Large Linear Systems (Computer Science and Applied Mathematics. Academic Press, New York, 1971).Google Scholar
  53. 53.
    R.S. Varga, Matrix Iterative Analysis. Series in Automatic Computation (Prentice-Hall, Englewood Cliffs, N.J., 1962).Google Scholar
  54. 54.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Vienna, New York, 1984).Google Scholar
  55. 55.
    S. Aboud, D. Marreiro, M. Saraniti, and R. Eisenberg. A poisson P3M} force field scheme for particle-based simulations of ionic liquids: Complementary material. pub/Eisenberg/Saraniti/JCEL04.pdf (August 2005).Google Scholar
  56. 56.
    M. Saraniti, A. Rein, G. Zandler, P. Vogl, and P. Lugli, “An efficient multigrid poisson solver for device simulations,” {IEEE Transaction on Computer–aided Design of Integrated Circuits and Systems}, 15(2), 141 (1996).CrossRefGoogle Scholar
  57. 57.
    G. Dahlquist and Å. Björck, Numerical Methods (Prentice-Hall, Englewood Cliffs, N.J., 1974).Google Scholar
  58. 58.
    A. Brandt, “Multigrid solvers on parallel computers,” in Elliptic Problem Solvers, edited by M. H. Schultz (Academic Press, New York, 1981) p. 39.Google Scholar
  59. 59.
    J.V.L. Beckers, C.P. Lowe, and S.W. De LeeuW, “An itrative PPPM method for simulating coulombic systems on distributed memory parallel computers,” Molecular Simulation, 20, 369 (1998).Google Scholar
  60. 60.
    H.L. Stone, “Iterative solution of implicit approximations of multidimensional partial differential equations,” SIAM Journal of Numerical Analysis, 5(3), 530 (1968).CrossRefGoogle Scholar
  61. 61.
    J.A. Meijerink and H.A. van der Vorst, “An iterative solution method for linear systems of which the coefficient matrix is a symmetric S-matrix,” Mathematics of Computation, 31, 148 (1977).Google Scholar
  62. 62.
    J. Ayubi-Moak, S. Wigger, S. Goodnick, and M. Saraniti, 3D biconjugate gradient-multi grid coupling schemes for field equations in semiconductor device simulation, in Proceedings of 2002 International Conference on Modeling and Simulation of Microsystems - MSM2002, April 2002. Accepted for poster presentation.Google Scholar
  63. 63.
    P.S. Ramanathan and H.L. Friedman, “Study of a refined model for aqueous 1-1 electrolytes,” Journal of Chemical Physics, 54(3), 1086 (1971).CrossRefGoogle Scholar
  64. 64.
    R.S. Berry, S.A. Rice, and J. Ross, Physical Chemistry, 2 edition. (Oxford University Press, May 2000).Google Scholar
  65. 65.
    M. Tuckerman, B.J. Berne, and G.J. Martyna, “Molecular dynamics algorithm for multiple time scales: Systems with long range forces,” Journal of Chemical Physics, 94(10), 6811 (1991).CrossRefGoogle Scholar
  66. 66.
    C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, Bristol and Philadelphia, 1991).Google Scholar
  67. 67.
    J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic, London, 1976).Google Scholar
  68. 68.
    M. Patra and M. Karttunen, “Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion and structural properties,” Journal of Computational Chemistry, 25, 678 (2004).CrossRefPubMedGoogle Scholar
  69. 69.
    K.-C. Ng, “Hypernetted chain solutions for the classical one-componenet plasma up to γ = 7000,” Journal of Chemical Physics, 61, 2680 (1974).CrossRefGoogle Scholar
  70. 70.
    L. Belloni, “A hypernetted chain study of highly asymmetrical polyelectrolytes,” Chemical Physics, 99, 43 (1985).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. Aboud
    • 1
  • D. Marreiro
    • 2
  • M. Saraniti
    • 2
  • R. Eisenberg
    • 3
  1. 1.Molecular Biophysics DepartmentRush UniversityChicagoUSA
  2. 2.Electrical and Computer Engineering DepartmentIllinois Institute of TechnologyChicagoUSA
  3. 3.Molecular Biophysics DepartmentRush UniversityChicagoUSA

Personalised recommendations