Skip to main content
Log in

Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Manifold representations of rotational/translational motion and conformational space of a ligand were previously shown to be effective for local energy optimization. In this paper we report the development of the Monte-Carlo energy minimization approach (MCM), which uses the same manifold representation. The approach was integrated into the docking pipeline developed for the current round of D3R experiment, and according to D3R assessment produced high accuracy poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement further improves docking quality. The code of the Monte-Carlo minimization is freely available at https://bitbucket.org/abc-group/mcm-demo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mirzaei H et al (2012) Rigid body energy minimization on manifolds for molecular docking. J Chem Theory Comput 8:4374–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hermann R, Differential Geometry (1980) Lie groups, and symmetric spaces (Sigurdur Helgason). SIAM Rev 22:524–526

    Article  Google Scholar 

  3. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45:503–528

    Article  Google Scholar 

  4. Mirzaei H et al (2015) Energy minimization on manifolds for docking flexible molecules. J Chem Theory Comput 11:1063–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozakov D et al (2014) Encounter complexes and dimensionality reduction in protein-protein association. Elife 3:e01370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilkinson RDA, Williams R, Scott CJ, Burden RE (2015) Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 396:867–882

    Article  CAS  PubMed  Google Scholar 

  7. Trott O, Olson AJ, Vina A (2009) Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Google Scholar 

  8. Padhorny D et al (2017) Protein–ligand docking using FFT based sampling: D3R case study. J Comput Aided Mol Des 32:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65:538–548

    Article  CAS  PubMed  Google Scholar 

  10. Schaefer M, Karplus MA (1996) Comprehensive analytical treatment of continuum electrostatics. J Phys Chem 100:1578–1599

    Article  CAS  Google Scholar 

  11. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA, Junmei Wang RM, Wolf JW, Caldwell PA, Kollman, Case DA (2005) Development and testing of a general amber force field. J Comput Chem (2004) 25(9):1157–1174

    Article  CAS  Google Scholar 

  12. Case DA et al (2016) AMBER 2016. University of California, California

    Google Scholar 

  13. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  15. Landrum G, RDKit: Open-source cheminformatics. http://www.rdkit.org

  16. Roy A, Skolnick J (2015) LIGSIFT: an open-source tool for ligand structural alignment and virtual screening. Bioinformatics 31:539–544

    Article  CAS  PubMed  Google Scholar 

  17. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  18. Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li P, Song LF, Merz KM Jr (2015) Systematic parameterization of monovalent ions employing the nonbonded model. J Chem Theory Comput 11:1645–1657

    Article  CAS  PubMed  Google Scholar 

  20. Maier JA et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hornak V, Okur A, Rizzo RC, Simmerling C (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci USA 103:915–920

    Article  CAS  PubMed  Google Scholar 

  22. Ester M, Kriegel H-P, Sander J, Xu X et al. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd 96:226–231

    Google Scholar 

  23. Bowers K et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In ACM/IEEE SC 2006 Conference (SC’06). https://doi.org/10.1109/sc.2006.54

  24. Kozakov D, Clodfelter KH, Vajda S, Camacho CJ (2005) Optimal clustering for detecting near-native conformations in protein docking. Biophys J 89:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrone JA et al (2017) Molecular simulations identify binding poses and approximate affinities of stapled α-helical peptides to MDM2 and MDMX. J Chem Theory Comput 13:863–869

    Article  CAS  PubMed  Google Scholar 

  26. Morrone JA, Perez A, MacCallum J, Dill KA (2017) Computed binding of peptides to proteins with MELD-accelerated molecular dynamics. J Chem Theory Comput 13:870–876

    Article  CAS  PubMed  Google Scholar 

  27. Grudinin S, Kadukova M, Eisenbarth A, Marillet S, Cazals F (2016) Predicting binding poses and affinities for protein—ligand complexes in the 2015 D3R grand challenge using a physical model with a statistical parameter estimation. J Comput Aided Mol Des 30:791–804

    Article  CAS  PubMed  Google Scholar 

  28. Yan C, Grinter SZ, Merideth BR, Ma Z, Zou X (2016) Iterative knowledge-based scoring functions derived from rigid and flexible decoy structures: evaluation with the 2013 and 2014 CSAR benchmarks. J Chem Inf Model 56:1013–1021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants NIH R21 GM127952, NIH R01 GM12581301, NSF AF 1816314, NSF AF 1645512 and RSF No 14-11-00877.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dima Kozakov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatov, M., Liu, C., Alekseenko, A. et al. Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge. J Comput Aided Mol Des 33, 119–127 (2019). https://doi.org/10.1007/s10822-018-0176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0176-0

Keywords

Navigation