Molecular dynamics characterization of the SAMHD1 Aicardi–Goutières Arg145Gln mutant: structural determinants for the impaired tetramerization

  • Francesca Cardamone
  • Mattia Falconi
  • Alessandro Desideri
Article
  • 68 Downloads

Abstract

Aicardi–Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi–Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP–protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.

Keywords

Genetic disease Classical all-atomistic molecular dynamics simulation Allosteric site Salt bridge Hydrogen bond Oligomerization 

Notes

Acknowledgements

This work has been supported from the CINECA center (https://www.cineca.it/) due to the project IscraC award. The authors would like to acknowledge the HPC support assistance of the CINECA center and the MD group of Prof. Siewert Jan Marrink (University of Groningen, The Netherlands) for the hospitality and critical useful discussion.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10822_2018_115_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (DOCX 3642 KB)

References

  1. 1.
    Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–661CrossRefGoogle Scholar
  2. 2.
    Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657CrossRefGoogle Scholar
  3. 3.
    Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schawartz O, Laguette N, Benkirane M (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 9:1–8CrossRefGoogle Scholar
  4. 4.
    Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228CrossRefGoogle Scholar
  5. 5.
    Yan J, Kaur S, DeLucia M, Hao C, Mehrens J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronsk S (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288:10406–10417CrossRefGoogle Scholar
  6. 6.
    Koharudin LMI, Wu Y, DeLucia M, Mehrens J, Gronenborn AM, Ahn J (2014) Structural basis of allosteric activation of sterile α-motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. J Biol Chem 289:32617–32627CrossRefGoogle Scholar
  7. 7.
    Amie SM, Bambara RA, Kim B (2013) GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 288:25001–25006CrossRefGoogle Scholar
  8. 8.
    Li Y, Kong J, Peng X, Hou W, Qin X, Yu X-F (2015) Structural insights into the high-efficiency catalytic mechanism of the sterile α-motif/histidine aspartate domain-containing protein. J Biol Chem 290:29428–29437CrossRefGoogle Scholar
  9. 9.
    Hansen EC, Seamon KJ, Cravens SL, Stivers JT (2014) GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state. Proc Natl Acad Sci USA 111:E1843–E1851CrossRefGoogle Scholar
  10. 10.
    Zhu C-F, Wei W, Peng X, Dong Y-H, Gong Y, Yu X-F (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. Acta Crystallogr D 71(Pt 3):516–524CrossRefGoogle Scholar
  11. 11.
    Ji X, Tang C, Zhao Q, Wang W, Xiong Y (2014) Structural basis of cellular dNTP regulation by SAMHD1. Proc Natl Acad Sci USA 111:E4305–E4314CrossRefGoogle Scholar
  12. 12.
    Arnold LH, Groom HCT, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP, Webb M, Taylor IA, Bishop KN (2015) Phospho-dependent regulation of SAMHD1 oligomerisation couples catalysis and restriction. PLoS Pathog 11:1–11CrossRefGoogle Scholar
  13. 13.
    Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside thiphosphate triphosphohydrolase. Nature 480:379–382CrossRefGoogle Scholar
  14. 14.
    Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF (2013) Structural insights into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 4:2722–2730Google Scholar
  15. 15.
    Ji X, Wu Y, Yan J, Mehrens J, Yang H, DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J, Xiong Y (2013) Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Biol 11:1304–1309CrossRefGoogle Scholar
  16. 16.
    Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BCJ, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L et al (2009) Mutations involved in Aicardi–Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832CrossRefGoogle Scholar
  17. 17.
    Goutières F (2005) Aicardi–Goutières syndrome. Brain Dev 27:201–206CrossRefGoogle Scholar
  18. 18.
    White TE, Brandariz-Nuñez A, Martinez-Lopez A, Knowlton C, Lenzi G, Kim B, Ivanov D, Diaz-Griffero F (2017) A SAMHD1 mutation associated with Aicardi–Goutières syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans. Hum Mutat 38:658–668CrossRefGoogle Scholar
  19. 19.
    Thiele H, Du Moulin M, Barczyk K, George C, Schwindt W, Nürnberg G, Frosch M, Kurlemann G, Roth J, Nürnberg P, Rutsch F (2010) Cerebral arterial stenoses and stroke: novel features of Aicardi–Goutières syndrome caused by the Arg164X mutation in SAMHD1 are associated with altered cytokine expression. Hum Mutat 31:E1836–E1850CrossRefGoogle Scholar
  20. 20.
    Dale RC, Gornall H, Singh-Grewal D, Alcausin M, Rice GI, Crow YJ (2010) Familial Aicardi–Goutières syndrome due to SAMHD1 mutations is associated with chronic arthropathy and contractures. Am J Med Genet A 152:938–942CrossRefGoogle Scholar
  21. 21.
    Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E (2011) SAMHD1-deficient CD14+ cells from individuals with Aicardi–Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7:E1002425CrossRefGoogle Scholar
  22. 22.
    Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, Rotger M, Telenti A, Lin YL, Pasero P, Maelfait J, Titsias M, Cohen DR, Henderson SJ, Ross MT, Bentley D, Hillmen P, Pettitt A, Rehwinkel J, Knight SJL, Taylor JC, Crow YJ, Benkirane M, Schuh A (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123:1021–1031CrossRefGoogle Scholar
  23. 23.
    Crow YJ (2013) Aicardi–Goutières syndrome. Handb Clin Neurol 113:1629–1635CrossRefGoogle Scholar
  24. 24.
    Krägeloh-Mann I (2013) Characterisation of Aicardi–Goutières syndrome. Lancet Neurol 12:1131–1132CrossRefGoogle Scholar
  25. 25.
    Cardamone F, Iacovelli F, Chillemi G, Falconi M, Desideri A (2017) A molecular dynamics simulation study decodes the early stage of the disassembly process abolishing the human SAMHD1 function. J Comput Aided Mol Des 31:497–505CrossRefGoogle Scholar
  26. 26.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  27. 27.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25CrossRefGoogle Scholar
  28. 28.
    Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676CrossRefGoogle Scholar
  29. 29.
    Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960CrossRefGoogle Scholar
  30. 30.
    Tironi IG, Sperb R, Smith PE, Van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459CrossRefGoogle Scholar
  31. 31.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101–014107CrossRefGoogle Scholar
  32. 32.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  33. 33.
    Parrinello M (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  34. 34.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  35. 35.
    Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637CrossRefGoogle Scholar
  36. 36.
    Kumari R, Kumar R (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962CrossRefGoogle Scholar
  37. 37.
    David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol 1084:193–226CrossRefGoogle Scholar
  38. 38.
    Luscombe NM (2001) Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res 29:2860–2874CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB)University of Rome Tor VergataRomeItaly

Personalised recommendations