Advertisement

Journal of Computer-Aided Molecular Design

, Volume 32, Issue 4, pp 547–557 | Cite as

Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A

  • Jian Gao
  • Li Liang
  • Qingqing Chen
  • Ling Zhang
  • Tonghui Huang
Article

Abstract

Acetyl-coenzyme A carboxylases (ACCs) is the first committed enzyme of fatty acid synthesis pathway. The inhibition of ACC is thought to be beneficial not only for diseases related to metabolism, such as type-2 diabetes, but also for infectious disease like bacterial infection disease. Soraphen A, a potent allosteric inhibitor of BC domain of yeast ACC, exhibit lower binding affinities to several yeast ACC mutants and the corresponding drug resistance mechanisms are still unknown. We report here a theoretical study of binding of soraphen A to wild type and yeast ACC mutants (including F510I, N485G, I69E, E477R, and K73R) via molecular dynamic simulation and molecular mechanics/generalized Born surface area free energy calculations methods. The calculated binding free energies of soraphen A to yeast ACC mutants are weaker than to wild type, which is highly consistent with the experimental results. The mutant F510I weakens the binding affinity of soraphen A to yeast ACC mainly by decreasing the van der Waals contributions, while the weaker binding affinities of Soraphen A to other yeast ACC mutants including N485G, I69E, E477R, and K73R are largely attributed to the decreased net electrostatic (ΔEele + ΔGGB) interactions. Our simulation results could provide important insights for the development of more potent ACC inhibitors.

Keywords

Acetyl-coenzyme A carboxylases Biotin carboxylase Soraphen A Drug resistance Molecular dynamics simulation 

Notes

Funding

This study was funded by National Natural Science Foundation of China (NSFC No. 21708033), China Postdoctoral Science Foundation funded project (Grants No. 2017M611916), Natural Science Foundation of Jiangsu Province (Grants No. BK20171184), Scientific Research Foundation for Talented Scholars of Xuzhou Medical College (Grant No. D2014008), and Science and Technology project of Xuzhou (Grant No. KC16SG249).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10822_2018_108_MOESM1_ESM.docx (1012 kb)
Supplementary material 1 (DOCX 1011 KB)

References

  1. 1.
    Corominasfaja B, Cuyàs E, Gumuzio J, Boschbarrera J, Leis O, Martin ÁG, Menendez JA (2014) Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5(18):8306–8316Google Scholar
  2. 2.
    Huang T, Sun J, Wang Q, Gao J, Liu Y (2015) Synthesis, biological evaluation and molecular docking studies of piperidinylpiperidines and spirochromanones possessing quinoline moieties as acetyl-CoA carboxylase inhibitors. Molecules 20(9):16221–16234CrossRefGoogle Scholar
  3. 3.
    Harriman G, Greenwood J, Bhat S, Huang X, Wang R, Paul D, Tong L, Saha AK, Westlin WF, Kapeller R (2016) Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc Natl Acad Sci USA 113(13):E1796CrossRefGoogle Scholar
  4. 4.
    Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Nostrand JLV, Hutchins A, Vera L (2016) Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 22(10):1108CrossRefGoogle Scholar
  5. 5.
    Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272.  https://doi.org/10.1146/annurev.nutr.28.061807.155434 CrossRefGoogle Scholar
  6. 6.
    Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291(5513):2613–2616.  https://doi.org/10.1126/science.1056843 CrossRefGoogle Scholar
  7. 7.
    Lenhard JM, Gottschalk WK (2002) Preclinical developments in type 2 diabetes. Adv Drug Deliv Rev 54(9):1199–1212CrossRefGoogle Scholar
  8. 8.
    Shen Y, Volrath SL, Weatherly SC, Elich TD, Tong L (2004) A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Mol Cell 16(6):881–891.  https://doi.org/10.1016/j.molcel.2004.11.034 CrossRefGoogle Scholar
  9. 9.
    Miller JR, Dunham S, Mochalkin I, Banotai C, Bowman M, Buist S, Dunkle B, Hanna D, Harwood HJ, Huband MD, Karnovsky A, Kuhn M, Limberakis C, Liu JY, Mehrens S, Mueller WT, Narasimhan L, Ogden A, Ohren J, Prasad JV, Shelly JA, Skerlos L, Sulavik M, Thomas VH, VanderRoest S, Wang L, Wang Z, Whitton A, Zhu T, Stover CK (2009) A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc Natl Acad Sci USA 106(6):1737–1742.  https://doi.org/10.1073/pnas.0811275106 CrossRefGoogle Scholar
  10. 10.
    Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P, Cox PB, Prasad JV, Lightle S, Huband MD, Stover CK (2009) Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 4(6):473–483.  https://doi.org/10.1021/cb9000102 CrossRefGoogle Scholar
  11. 11.
    Cheng CC, Shipps GW Jr, Yang Z, Sun B, Kawahata N, Soucy KA, Soriano A, Orth P, Xiao L, Mann P, Black T (2009) Discovery and optimization of antibacterial AccC inhibitors. Bioorg Med Chem Lett 19(23):6507–6514.  https://doi.org/10.1016/j.bmcl.2009.10.057 CrossRefGoogle Scholar
  12. 12.
    Polyak SW, Abell AD, Wilce MC, Zhang L, Booker GW (2012) Structure, function and selective inhibition of bacterial acetyl-coa carboxylase. Appl Microbiol Biotechnol 93(3):983–992.  https://doi.org/10.1007/s00253-011-3796-z CrossRefGoogle Scholar
  13. 13.
    Gao J, Sun J, Wang T, Sheng S, Huang T (2017) Combined 3D-QSAR modeling and molecular docking study on spiro-derivatives as inhibitors of acetyl-CoA carboxylase. Med Chem Res 26(2):361–371CrossRefGoogle Scholar
  14. 14.
    Gerth K, Bedorf N, Irschik H, Hofle G, Reichenbach H (1994) The soraphens—a family of novel antifungal compounds from Sorangium-cellulosum (Myxobacteria).1. Soraphen a(1-alpha)—fermentation, isolation, biological properties. J Antibiot 47(1):23–31CrossRefGoogle Scholar
  15. 15.
    Vahlensieck HF, Pridzun L, Reichenbach H, Hinnen A (1994) Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr Genet 25(2):95–100CrossRefGoogle Scholar
  16. 16.
    Weatherly SC, Volrath SL, Elich TD (2004) Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain. Biochem J 380(Pt 1):105–110.  https://doi.org/10.1042/BJ20031960 CrossRefGoogle Scholar
  17. 17.
    Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688.  https://doi.org/10.1002/jcc.20290 CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09 RA. Gaussian, Inc., WallingfordGoogle Scholar
  19. 19.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260.  https://doi.org/10.1016/j.jmgm.2005.12.005 CrossRefGoogle Scholar
  20. 20.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012.  https://doi.org/10.1002/jcc.10349 CrossRefGoogle Scholar
  21. 21.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174.  https://doi.org/10.1002/jcc.20035 CrossRefGoogle Scholar
  22. 22.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  23. 23.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  24. 24.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  25. 25.
    Wang J, Hou T, Xu X (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput 2(3):287–306Google Scholar
  26. 26.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897CrossRefGoogle Scholar
  27. 27.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2):383–394CrossRefGoogle Scholar
  28. 28.
    Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230CrossRefGoogle Scholar
  29. 29.
    Hou T, Wang J, Li Y, Wang W (2010) Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82.  https://doi.org/10.1021/ci100275a CrossRefGoogle Scholar
  30. 30.
    Gao J, Cui W, Du Y, Ji M (2013) Insight into the molecular mechanism about lowered dihydrofolate binding affinity to dihydrofolate reductase-like 1 (DHFRL1). J Mol Model 19(12):5187–5198.  https://doi.org/10.1007/s00894-013-2018-2 CrossRefGoogle Scholar
  31. 31.
    Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913CrossRefGoogle Scholar
  32. 32.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2):383–394.  https://doi.org/10.1002/prot.20033 CrossRefGoogle Scholar
  33. 33.
    Delano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San CarlosGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouPeople’s Republic of China

Personalised recommendations