Skip to main content
Log in

Sparse QSAR modelling methods for therapeutic and regenerative medicine

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The quantitative structure–activity relationships method was popularized by Hansch and Fujita over 50 years ago. The usefulness of the method for drug design and development has been shown in the intervening years. As it was developed initially to elucidate which molecular properties modulated the relative potency of putative agrochemicals, and at a time when computing resources were scarce, there is much scope for applying modern mathematical methods to improve the QSAR method and to extending the general concept to the discovery and optimization of bioactive molecules and materials more broadly. I describe research over the past two decades where we have rebuilt the unit operations of the QSAR method using improved mathematical techniques, and have applied this valuable platform technology to new important areas of research and industry such as nanoscience, omics technologies, advanced materials, and regenerative medicine. This paper was presented as the 2017 ACS Herman Skolnik lecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from [13]

Fig. 5

Reproduced with permission from Hook et al. [25]

Fig. 6

Reproduced with permission from [40]

Fig. 7

Reproduced with permission from [41]

Fig. 8
Fig. 9

Reproduced with permission from [42]. Copyright 2015 National Academy of Sciences

Fig. 10

Figure 10(b) reproduced with permission from Hook et al. [25]

Fig. 11

Reproduced with permission from Thornton et al. [48]

Similar content being viewed by others

References

  1. Mitchell M (2009) Complexity: a guided tour. Oxford University Press, Oxford

    Google Scholar 

  2. Halley JD, Winkler DA (2008) Complexity 14(2):10

    Article  Google Scholar 

  3. Halley JD, Winkler DA (2008) Complexity 13(5):10

    Article  Google Scholar 

  4. Bhadeshia HKDH. (1999) ISIJ Int 39(10):966

    Article  CAS  Google Scholar 

  5. Epa VC, Burden FR, Tassa C, Weissleder R, Shaw S, Winkler DA (2012) Nano Letters 12(11):5808

    Article  CAS  Google Scholar 

  6. Winkler DA, Burden FR (2012) Mol Biosyst 8(3):913

    Article  CAS  Google Scholar 

  7. Hansch C, Maloney PP, Fujita T (1962) Nature 194(4824):178

    Article  CAS  Google Scholar 

  8. Hansch C, Fujita T (1964) J Am Chem Soc 86(8):1616

    Article  CAS  Google Scholar 

  9. Fujita T, Winkler DA (2016) J Chem Inf Model 56(2):269

    Article  CAS  Google Scholar 

  10. Le T, Epa VC, Burden FR, Winkler DA (2012) Chem Rev 112(5):2889

    Article  CAS  Google Scholar 

  11. Gedeck P, Rohde B, Bartels C (2006) J Chem Inf Model 46(5):1924

    Article  CAS  Google Scholar 

  12. Clark M, Cramer RD (1993) Quant Struct Act Rel 12(2):137

    Article  CAS  Google Scholar 

  13. Alexander DLJ, Tropsha A, Winkler DA (2015) J Chem Inf Model 55(7):1316

    Article  CAS  Google Scholar 

  14. Hansch C, Fujita T (1995) ACS Sym Ser 606:1

    Article  CAS  Google Scholar 

  15. Kubinyi H (1990) J Cancer Res Clin 116(6):529

    Article  CAS  Google Scholar 

  16. Niculescu SP (2003) J Mol Struct 622(1–2):71

    Article  CAS  Google Scholar 

  17. Burden FR, Rosewarne BS, Winkler DA (1997) Chemometr Intell Lab Syst 38(2):127

    Article  CAS  Google Scholar 

  18. Burden FR, Winkler DA (1999) J Chem Inf Comput Sci 39(2):236

    Article  CAS  Google Scholar 

  19. Winkler D (2001) Drug Discov Today 6(23):1198

    Article  Google Scholar 

  20. Winkler DA (2004) Mol Biotechnol 27(2):139

    Article  Google Scholar 

  21. Burden FR, Polley MJ, Winkler DA (2009) J Chem Inf Model 49(3):710

    Article  CAS  Google Scholar 

  22. Winkler DA, Burden FR, Watkins AJR (1998) Quant Struct Act Rel 17(1):14

    Article  CAS  Google Scholar 

  23. Burden FR, Winkler DA (2005) J Mol Graph Model 23(6):481

    Article  CAS  Google Scholar 

  24. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato J, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, RAdams RP, Aspuru-Guzik A (2018) ACS Cent Sci ASAP. https://doi.org/10.1021/acscentsci.7b00572

    Google Scholar 

  25. Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine DJ, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR (2012) Nat Biotechnol 30(9):868

    Article  CAS  Google Scholar 

  26. Topliss JG, Costello RJ (1972) J Med Chem 15(10):1066

    Article  CAS  Google Scholar 

  27. Figueiredo MAT (2003) IEEE Trans Pattern Anal Mach Intell 25(9):1150

    Article  Google Scholar 

  28. Burden FR, Winkler DA (2009) QSAR Comb Sci 28(6–7):645

    Article  CAS  Google Scholar 

  29. Burden FR, Winkler DA (2009) Bayesian regularization of neural networks. In: Livingston D (ed) Artificial neural networks: methods and applications, vol 458. Humana Press, Totowa

    Google Scholar 

  30. Burden FR, Winkler DA (2015) J Chem Inf Model 55(8):1529

    Article  CAS  Google Scholar 

  31. Hornik K (1991) Neural Netw 4(2):251

    Article  Google Scholar 

  32. Burden FR, Winkler DA (2009) QSAR Comb Sci 28(10):1092

    Article  CAS  Google Scholar 

  33. Burden FR, Winkler DA (1999) J Med Chem 42(16):3183

    Article  CAS  Google Scholar 

  34. Winkler DA, Le TC (2017) Mol Inf 36:(1–2)

    Google Scholar 

  35. Burden FR, Ford MG, Whitley DC, Winkler DA (2000) J Chem Inf Comput Sci 40(6):1423

    Article  CAS  Google Scholar 

  36. Salahinejad M, Le TC, Winkler DA (2013) Mol Pharmaceut 10(7):2757

    Article  CAS  Google Scholar 

  37. Winkler DA (2016) Toxicol Appl Pharmacol 299:96

    Article  CAS  Google Scholar 

  38. Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ (2013) Toxicology 313(1):15

    Article  CAS  Google Scholar 

  39. Mauri A, Consonni V, Pavan M, Todeschini R (2006) Match Commun Math Comput Sci 56(2):237

    CAS  Google Scholar 

  40. Epa VC, Hook AL, Chang C, Yang J, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR, Winkler DA (2014) Adv Funct Mater 24(14):2085

    Article  CAS  Google Scholar 

  41. Mikulskis P, Hook AL, Alexander MH, Winkler DA (2018) ACS Appl Mater Interfaces 10(1):139–149

    Article  CAS  Google Scholar 

  42. Autefage H, Gentleman E, Littmann E, Hedegaard MAB, Von Erlach T, O’Donnell M, Burden FR, Winkler DA, Stevens MM (2015) Proc Natl Acad Sci USA 112(14):4280

    Article  CAS  Google Scholar 

  43. Cybenko G (1989) Math Control Signal Syst 2(4):303

    Article  Google Scholar 

  44. Le TC, Winkler DA (2015) ChemMedChem 10(8):1296

    Article  CAS  Google Scholar 

  45. Le TC, Winkler DA (2016) Chem Rev 116(10):6107

    Article  CAS  Google Scholar 

  46. Puentedura RR (2003) The Baldwin effect in the age of computation. In: Weber BH, Depew DJ (eds) Evolution and learning: the Baldwin effect reconsidered. MIT Press, Cambridge

    Google Scholar 

  47. Hinton GE, Nowlan SJ (1987) Complex Syst 1:495

    Google Scholar 

  48. Thornton AW, Simon CM, Kim J, Kwon O, Deeg KS, Konstas K, Pas SJ, Hill MR, Winkler DA, Haranczyk M, Smit B (2017) Chem Mater 29(7):2844

    Article  CAS  Google Scholar 

  49. Nowak-Sliwinska P, Weiss A, Ding X, Dyson PJ, van den Bergh H, Griffioen AW, Ho C-M (2016) Nat Protoc 11:302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the very talented members of my group, Frank Burden (my long-term collaborator in neural networks), Vidana, Epa, Anna Tarasova, Julianne Halley, Mitch Polley, Tu Le, and my current collaborators at CSIRO, Imperial College, MIT, and Nottingham. Their contributions are captured in the cited publications and I’m extremely grateful for their dedication and valuable intellectual contributions. I’ve also been very fortunate to have some excellent mentors during my career. I’m especially grateful to Prof. Toshio Fujita, Prof. Peter Andrews, and Prof. Graham Richards for valuable guidance and mentorship. I would also like to thank the ACS for the Herman Skolnik award and travel support, and the speakers in the Skolnik symposium for their great support. Support of UK Engineering and Physical Sciences Research Council (EPSRC) Grant EP/N006615/1 for the Programme Grant in Next Generation Biomaterials Discovery and a Monash University-Nottingham travelling fellowship are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Winkler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, D.A. Sparse QSAR modelling methods for therapeutic and regenerative medicine. J Comput Aided Mol Des 32, 497–509 (2018). https://doi.org/10.1007/s10822-018-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0106-1

Keywords

Navigation