Journal of Computer-Aided Molecular Design

, Volume 29, Issue 7, pp 655–665 | Cite as

Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

  • Hulya Unan
  • Ahmet Yildirim
  • Mustafa Tekpinar


Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.


Molecular dynamics Force fields Adenylate kinase Conformational transitions 



The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). We thank them for providing us superb computational resources and technical help for this research. Scientific Research Projects Office (BAP) of Yuzuncu Yil University has supported this research under the project number 2015-FBE-YL008.

Supplementary material

10822_2015_9849_MOESM1_ESM.docx (6.9 mb)
Supplementary material 1 (DOCX 7080 kb)


  1. 1.
    Kubitzki MB, de Groot BL (2008) Structure 16(8):1175CrossRefGoogle Scholar
  2. 2.
    Aden J, Wolf-Watz M (2007) J Am Chem Soc 129(45):14003CrossRefGoogle Scholar
  3. 3.
    Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, Chu JW, Yang H (2007) Proc Natl Acad Sci USA 104(46):18055CrossRefGoogle Scholar
  4. 4.
    Schrank TP, Wrabl JO, Hilser VJ (2013) Top Curr Chem 337:95CrossRefGoogle Scholar
  5. 5.
    Seyler SL, Beckstein O (2014) Mol Simul 1:855–877CrossRefGoogle Scholar
  6. 6.
    Sinev MA, Sineva EV, Ittah V, Haas E (1996) Biochemistry 35(20):6425CrossRefGoogle Scholar
  7. 7.
    Shapiro YE, Sinev MA, Sineva EV, Tugarinov V, Meirovitch E (2000) Biochemistry 39(22):6634CrossRefGoogle Scholar
  8. 8.
    Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D (2004) Nat Struct Mol Biol 11(10):945CrossRefGoogle Scholar
  9. 9.
    Shapiro YE, Meirovitch E (2006) J Phys Chem B 110(23):11519CrossRefGoogle Scholar
  10. 10.
    Aden J, Verma A, Schug A, Wolf-Watz M (2012) J Am Chem Soc 134(40):16562CrossRefGoogle Scholar
  11. 11.
    Lin CY, Huang JY, Lo LW (2013) J Phys Chem B 117(45):13947CrossRefGoogle Scholar
  12. 12.
    Olsson U, Wolf-Watz M (2010) Nat Commun 1:111CrossRefGoogle Scholar
  13. 13.
    Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100(22):12570CrossRefGoogle Scholar
  14. 14.
    Temiz NA, Meirovitch E, Bahar I (2004) Proteins 57(3):468CrossRefGoogle Scholar
  15. 15.
    Maragakis P, Karplus M (2005) J Mol Biol 352(4):807CrossRefGoogle Scholar
  16. 16.
    Chu JW, Voth GA (2007) Biophys J 93(11):3860CrossRefGoogle Scholar
  17. 17.
    Lu Q, Wang J (2008) J Am Chem Soc 130(14):4772CrossRefGoogle Scholar
  18. 18.
    Daily MD, Makowski L, Phillips GN Jr, Cui Q (2012) Chem Phys 396:84CrossRefGoogle Scholar
  19. 19.
    Kruger DM, Ahmed A, Gohlke H (2012) Nucleic Acids Res 40(Web Server issue):W310CrossRefGoogle Scholar
  20. 20.
    Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B (2014) PLoS Comput Biol 10(4):e1003521CrossRefGoogle Scholar
  21. 21.
    Daily MD, Phillips GN Jr, Cui Q (2010) J Mol Biol 400(3):618CrossRefGoogle Scholar
  22. 22.
    Lou H, Cukier RI (2006) J Phys Chem B 110(47):24121CrossRefGoogle Scholar
  23. 23.
    Arora K, Brooks CL 3rd (2007) Proc Natl Acad Sci USA 104(47):18496CrossRefGoogle Scholar
  24. 24.
    Beckstein O, Denning EJ, Perilla JR, Woolf TB (2009) J Mol Biol 394(1):160CrossRefGoogle Scholar
  25. 25.
    Potoyan DA, Zhuravlev PI, Papoian GA (2012) J Phys Chem B 116(5):1709CrossRefGoogle Scholar
  26. 26.
    Gur M, Madura JD, Bahar I (2013) Biophys J 105(7):1643CrossRefGoogle Scholar
  27. 27.
    Wang J, Shao Q, Xu Z, Liu Y, Yang Z, Cossins BP, Jiang H, Chen K, Shi J, Zhu W (2014) J Phys Chem B 118(1):134CrossRefGoogle Scholar
  28. 28.
    Krishnamurthy H, Lou HF, Kimple A, Vieille C, Cukier RI (2005) Proteins 58(1):88CrossRefGoogle Scholar
  29. 29.
    Lou H, Cukier RI (2006) J Phys Chem B 110(25):12796CrossRefGoogle Scholar
  30. 30.
    Pontiggia F, Zen A, Micheletti C (2008) Biophys J 95(12):5901CrossRefGoogle Scholar
  31. 31.
    Brokaw JB, Chu JW (2010) Biophys J 99(10):3420CrossRefGoogle Scholar
  32. 32.
    Song HD, Zhu F (2013) PLoS One 8(7):e68023CrossRefGoogle Scholar
  33. 33.
    Ping J, Hao P, Li YX, Wang JF (2013) Biomed Res Int 2013:628536CrossRefGoogle Scholar
  34. 34.
    van der Spoel D, Lindahl E (2003) J Phys Chem B 107(40):11178CrossRefGoogle Scholar
  35. 35.
    Piana S, Lindorff-Larsen K, Shaw DE (2011) Biophys J 100(9):L47CrossRefGoogle Scholar
  36. 36.
    Lange OF, van der Spoel D, de Groot BL (2010) Biophys J 99(2):647CrossRefGoogle Scholar
  37. 37.
    Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) PLoS One 7(2):e32131CrossRefGoogle Scholar
  38. 38.
    Beauchamp KA, Lin YS, Das R, Pande VS (2012) J Chem Theory Comput 8(4):1409CrossRefGoogle Scholar
  39. 39.
    Piana S, Klepeis JL, Shaw DE (2014) Curr Opin Struct Biol 24:98CrossRefGoogle Scholar
  40. 40.
    MacKerell AD Jr, Banavali N, Foloppe N (2000) Biopolymers 56(4):257CrossRefGoogle Scholar
  41. 41.
    Wang JM, Cieplak P, Kollman PA (2000) J Comput Chem 21(12):1049CrossRefGoogle Scholar
  42. 42.
    Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25(13):1656CrossRefGoogle Scholar
  43. 43.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105(28):6474CrossRefGoogle Scholar
  44. 44.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces, vol 14. Springer, Netherlands, p 331CrossRefGoogle Scholar
  45. 45.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926CrossRefGoogle Scholar
  46. 46.
    Muller CW, Schulz GE (1992) J Mol Biol 224(1):159CrossRefGoogle Scholar
  47. 47.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Bioinformatics 29(7):845CrossRefGoogle Scholar
  48. 48.
    Miyamoto S, Kollman PA (1992) J Comput Chem 13(8):952CrossRefGoogle Scholar
  49. 49.
    Hess B (2008) J Chem Theory Comput 4(1):116CrossRefGoogle Scholar
  50. 50.
    Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81(8):3684CrossRefGoogle Scholar
  51. 51.
    Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126(1):014101CrossRefGoogle Scholar
  52. 52.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089CrossRefGoogle Scholar
  53. 53.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33CrossRefGoogle Scholar
  54. 54.
    Muller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Structure 4(2):147CrossRefGoogle Scholar
  55. 55.
    Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Eur Biophys J 40(7):843CrossRefGoogle Scholar
  56. 56.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215(3):403CrossRefGoogle Scholar
  57. 57.
    Diederichs K, Schulz GE (1991) J Mol Biol 217(3):541CrossRefGoogle Scholar
  58. 58.
    Schlauderer GJ, Proba K, Schulz GE (1996) J Mol Biol 256(2):223CrossRefGoogle Scholar
  59. 59.
    Roe DR, Okur A, Wickstrom L, Hornak V, Simmerling C (2007) J Phys Chem B 111(7):1846CrossRefGoogle Scholar
  60. 60.
    Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) J Mol Biol 366(5):1661CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceYuzuncu Yil UniversityVanTurkey
  2. 2.Department of Physics, Faculty of Science and ArtsSiirt UniversitySiirtTurkey

Personalised recommendations