Skip to main content

Advertisement

Log in

In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase (PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bourzac K (2014) Infectious disease: beating the big three. Nature 507:S4–S7

    Article  CAS  Google Scholar 

  2. Rich SM, Leendertz FH, Xu G, LeBreton M, Djoko CF, Aminake MN, Takang EE, Diffo JL, Pike BL, Rosenthal BM, Formenty P, Boesch C, Ayala FJ, Wolfe ND (2009) The origin of malignant malaria. Proc Natl Acad Sci USA 106:14902–14907

    Article  CAS  Google Scholar 

  3. Tschan S, Kremsner PG, Mordmuller B (2012) Emerging drugs for malaria. Expert Opin Emerg Drugs 17:319–333

    Article  CAS  Google Scholar 

  4. O’Brien C, Henrich PP, Passi N, Fidock DA (2011) Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr Opin Infect Dis 24:570–577

    Article  Google Scholar 

  5. Nayyar GM, Breman JG, Newton PN, Herrington J (2012) Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis 12:488–496

    Article  Google Scholar 

  6. Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L (2011) Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA 108:11405–11410

    Article  CAS  Google Scholar 

  7. Schrader FC, Glinca S, Sattler JM, Dahse HM, Afanador GA, Prigge ST, Lanzer M, Mueller AK, Klebe G, Schlitzer M (2013) Novel type II fatty acid biosynthesis (FAS II) inhibitors as multistage antimalarial agents. ChemMedChem 8:442–461

    Article  CAS  Google Scholar 

  8. Elabbadi N, Ancelin ML, Vial HJ (1992) Use of radioactive ethanolamine incorporation into phospholipids to assess invitro antimalarial activity by the semiautomated microdilution technique. Antimicrob Agents Chemother 36:50–55

    Article  CAS  Google Scholar 

  9. Vial HJ, Thuet MJ, Philippot JR (1982) Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. J Protozool 29:258–263

    Article  CAS  Google Scholar 

  10. Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216

    Article  CAS  Google Scholar 

  11. Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95:12352–12357

    Article  CAS  Google Scholar 

  12. Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD et al (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4:567–578

    Article  Google Scholar 

  13. Qidwai T, Khan F (2012) Antimalarial drugs and drug targets specific to fatty acid metabolic pathway of Plasmodium falciparum. Chem Biol Drug Des 80:155–172

    Article  CAS  Google Scholar 

  14. Vaughan AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11:506–520

    Article  CAS  Google Scholar 

  15. Derbyshire ER, Mota MM, Clardy J (2011) The next opportunity in anti-malaria drug discovery: the liver stage. PLoS Pathog 7:e1002178

    Article  CAS  Google Scholar 

  16. Mazier D, Renia L, Snounou G (2009) A pre-emptive strike against malaria’s stealthy hepatic forms. Nat Rev Drug Discov 8:854–864

    Article  CAS  Google Scholar 

  17. Roujeinikova A, Sedelnikova S, de Boer GJ, Stuitje AR, Slabas AR, Rafferty JB, Rice DW (1999) Inhibitor binding studies on enoyl reductase reveal conformational changes related to substrate recognition. J Biol Chem 274:30811–30817

    Article  CAS  Google Scholar 

  18. Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO (1998) Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem 273:30316–30320

    Article  CAS  Google Scholar 

  19. Hayashi T, Yamamoto O, Sasaki H, Kawaguchi A, Okazaki H (1983) Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem Biophys Res Commun 115:1108–1113

    Article  CAS  Google Scholar 

  20. Jackowski S, Murphy CM, Cronan JE Jr, Rock CO (1989) Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem 264:7624–7629

    CAS  Google Scholar 

  21. Nishida I, Kawaguchi A, Yamada M (1986) Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J Biochem 99:1447–1454

    CAS  Google Scholar 

  22. Baldock C, Rafferty JB, Sedelnikova SE, Baker PJ, Stuitje AR, Slabas AR, Hawkes TR, Rice DW (1996) A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274:2107–2110

    Article  CAS  Google Scholar 

  23. Parikh SL, Xiao G, Tonge PJ (2000) Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39:7645–7650

    Article  CAS  Google Scholar 

  24. Freundlich JS, Wang F, Tsai HC, Kuo M, Shieh HM, Anderson JW et al (2007) X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy. J Biol Chem 282:25436–25444

    Article  CAS  Google Scholar 

  25. Kumar G, Parasuraman P, Sharma SK, Banerjee T, Karmodiya K, Surolia N, Surolia A (2007) Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem 50:2665–2675

    Article  CAS  Google Scholar 

  26. McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 31:109–113

    Article  CAS  Google Scholar 

  27. Tallorin L, Durrant JD, Nguyen QG, McCammon JA, Burkart MD (2014) Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase. Biorgan Med Chem. doi:10.1016/j.bmc.2014.09.002

  28. Pidugu LS, Kapoor M, Surolia N, Surolia A, Suguna K (2004) Structural basis for the variation in triclosan affinity to enoyl reductases. J Mol Biol 343:147–155

    Article  CAS  Google Scholar 

  29. Ward WH, Holdgate GA, Rowsell S, McLean EG, Pauptit RA, Clayton E et al (1999) Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry 38:12514–12525

    Article  CAS  Google Scholar 

  30. Oliveira JS, Vasconcelos IB, Moreira IS, Santos DS, Basso LA (2007) Enoyl reductases as targets for the development of anti-tubercular and anti-malarial agents. Curr Drug Targets 8:399–411

    Article  CAS  Google Scholar 

  31. Belluti F, Perozzo R, Lauciello L, Colizzi F, Kostrewa D, Bisi A, Gobbi S, Rampa A, Bolognesi ML, Recanatini M, Brun R, Scapozza L, Cavalli A (2013) Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum enoyl-ACP-reductase (PfFabI). J Med Chem 56:7516–7526

    Article  CAS  Google Scholar 

  32. Lu X, Huang K, You Q (2011) Enoyl acyl carrier protein reductase inhibitors: a patent review (2006–2010). Expert Opin Ther Pat 21:1007–1022

    Article  CAS  Google Scholar 

  33. Maity K, Bhargav SP, Sankaran B, Surolia N, Surolia A, Suguna K (2010) X-ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition. IUBMB Life 62:467–476

    CAS  Google Scholar 

  34. Andricopulo AD, Salum LB, Abraham DJ (2009) Structure-based drug design strategies in medicinal chemistry. Curr Top Med Chem 9:771–790

    Article  CAS  Google Scholar 

  35. Lee HM, Singh NJ (2011) Understanding drug–protein interactions in Escherichia coli FabI and various fabi inhibitor complexes. B Korean Chem Soc 32:162–168

    Article  CAS  Google Scholar 

  36. Pasqualoto KFM, Ferreira MMC (2006) Application of a receptor pruning methodology to the enoyl-ACP reductase from Escherichia coli (Fabl). QSAR Comb Sci 25:629–636

    Article  CAS  Google Scholar 

  37. Singh NJ, Shin D, Lee HM, Kim HT, Chang HJ, Cho JM, Kim KS, Ro S (2011) Structural basis of triclosan resistance. J Struct Biol 174:173–179

    Article  Google Scholar 

  38. Yang L, Liu Y, Sternberg C, Molin S (2010) Evaluation of enoyl-acyl carrier protein reductase inhibitors as Pseudomonas aeruginosa quorum-quenching reagents. Molecules 15:780–792

    Article  CAS  Google Scholar 

  39. Lindert S, McCammon JA (2012) Dynamics of Plasmodium falciparum enoyl-ACP reductase and implications on drug discovery. Protein Sci 21:1734–1745

    Article  CAS  Google Scholar 

  40. Nicola G, Smith CA, Lucumi E, Kuo MR, Karagyozov L, Fidock DA, Sacchettini JC, Abagyan R (2007) Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. Biochem Biophys Res Commun 358:686–691

    Article  CAS  Google Scholar 

  41. Morde VA, Shaikh MS, Pissurlenkar RR, Coutinho EC (2009) Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors. Mol Divers 13:501–517

    Article  CAS  Google Scholar 

  42. Frecer V, Megnassan E, Miertus S (2009) Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. Eur J Med Chem 44:3009–3019

    Article  CAS  Google Scholar 

  43. Shah P, Siddiqi MI (2010) 3D-QSAR studies on triclosan derivatives as Plasmodium falciparum enoyl acyl carrier reductase inhibitors. SAR QSAR Environ Res 21:527–545

    Article  CAS  Google Scholar 

  44. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  45. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522–W525

    Article  Google Scholar 

  46. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    Article  CAS  Google Scholar 

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  48. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  Google Scholar 

  49. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  50. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  51. Lee HS, Choi J, Kufareva I, Abagyan R, Filikov A, Yang Y, Yoon S (2008) Optimization of high throughput virtual screening by combining shape-matching and docking methods. J Chem Inf Model 48:489–497

    Article  CAS  Google Scholar 

  52. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  53. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Google Scholar 

  54. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  55. Lindert S, Zhu W, Liu YL, Pang R, Oldfield E, McCammon JA (2013) Farnesyl diphosphate synthase inhibitors from in silico screening. Chem Biol Drug Des 81(6):742–748

  56. Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170

    Article  CAS  Google Scholar 

  57. Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50:771–784

    Article  CAS  Google Scholar 

  58. Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114

    Article  CAS  Google Scholar 

  59. Choi KH, Kremer L, Besra GS, Rock CO (2000) Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275:28201–28207

    CAS  Google Scholar 

  60. Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7:167–173

    Article  CAS  Google Scholar 

  61. Kapoor M, Gopalakrishnapai J, Surolia N, Surolia A (2004) Mutational analysis of the triclosan-binding region of enoyl-ACP (acyl-carrier protein) reductase from Plasmodium falciparum. Biochem J 381:735–741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jacob Durrant for helpful discussions and careful reading of the manuscript. Additionally we would like to thank Dr. Victoria Feher for her help with ordering the ChemBridge compounds. This work was supported by the National Institutes of Health NIH R21A090213, NIH R01GM094924, and NIH R01GM095970 (MDB), and the National Science Foundation, the National Institutes of Health, the Howard Hughes Medical Institute, the National Biomedical Computation Resource, and the NSF Supercomputer Centers (JAM). Computational resources were supported, in part, by the National Science Foundation grant PHY-0822283, the Center for Theoretical Biological Physics. S. L. was supported by the American Heart Association (12POST11570005) and the Center for Theoretical Biological Physics. L.T. was supported by the San Diego Match Fellowship and the University of California Interfaces Training Grant. We would like to acknowledge the UCSD Chemistry and Biochemistry Mass Spectrometry Facility; Professor Pieter Dorrestein and Dr. Jane Yang for providing the P. falciparum ENR plasmid; Dr. James La Clair, Dr. Joris Beld, and Christopher Vickery for manuscript design and input; and Dr. Nicolas Kosa for enzymatic assay and protein expression consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Lindert.

Additional information

Steffen Lindert and Lorillee Tallorin have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindert, S., Tallorin, L., Nguyen, Q.G. et al. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors. J Comput Aided Mol Des 29, 79–87 (2015). https://doi.org/10.1007/s10822-014-9806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9806-3

Keywords

Navigation