Journal of Computer-Aided Molecular Design

, Volume 26, Issue 3, pp 289–299 | Cite as

Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study

  • Amit Kumar Chaubey
  • Kshatresh Dutta Dubey
  • Rajendra Prasad Ojha


Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.


G-quadruplex LNA MD simulation Free energy calculation 



The authors are thankful to DST, New Delhi for computational facility in the form of FIST scheme. We thankfully acknowledge the partial computational work at BRAF of C-DAC, Pune, India. KDD acknowledges CSIR for senior research fellowship.

Supplementary material

10822_2012_9548_MOESM1_ESM.doc (7.3 mb)
Supplementary material 1 (DOC 7525 kb)


  1. 1.
    Feldser DM, Hackett JA, Greider CW (2003) Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer 3:623–627CrossRefGoogle Scholar
  2. 2.
    Cech TR (2000) Life at the end of the chromosome: telomeres and telomerase. Angew Chem Int Ed 39:34–43CrossRefGoogle Scholar
  3. 3.
    Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809CrossRefGoogle Scholar
  4. 4.
    Organisian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 29:155–165CrossRefGoogle Scholar
  5. 5.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015CrossRefGoogle Scholar
  6. 6.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  7. 7.
    Mergny JL, Helene C (1998) G-quadruplex DNA: a target for drug design. Nat Med 4:1366–1367CrossRefGoogle Scholar
  8. 8.
    Sun DY, Hurley LH (2001) Methods in enzymology, drug-nucleic acid interactions. Academic Press, Inc 340:573–592Google Scholar
  9. 9.
    Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200CrossRefGoogle Scholar
  10. 10.
    Neidle S, Parkinson G (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1:383–393CrossRefGoogle Scholar
  11. 11.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352CrossRefGoogle Scholar
  12. 12.
    Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282Google Scholar
  13. 13.
    Sun H, Karow JK, Hickson ID, Maizels N (1998) The Bloom’s syndrome helicase unwinds G4 DNA. J Biol Chem 273:27587–27592CrossRefGoogle Scholar
  14. 14.
    Sun H, Bennett RJ, Maizels N (1999) The saccharomyces cerevisiae Sgs1 helicase esciently unwinds G-G paired DNAs. Nucleic Acids Res 27:1978–1984CrossRefGoogle Scholar
  15. 15.
    Hackett JA, Feldser DM, Greider CW (2001) Telomere dysfunction increases mutation rate and genomic instability. Cell 106:275–286CrossRefGoogle Scholar
  16. 16.
    Salazar M, Thompson BD, Kerwin SM, Hurley LH (1996) Thermally induced DNA:RNA hybrid to G-quadruplex transitions: possible implications for telomere synthesis by telomerase. Biochemistry 35:16110–16115CrossRefGoogle Scholar
  17. 17.
    Hurley LH (2001) Secondary DNA structures as molecular targets for cancer therapeutics. Biochem Soc Trans 29:692–696CrossRefGoogle Scholar
  18. 18.
    Hurley LH, Wheelhouse RT, Sun D, Kerwin SM, Salazar M, Fedoro OY, Han FX, Han HY, Izbicka E et al (2000) G-quadruplexes as targets for drug design. Pharmacol Ther 85:141–158CrossRefGoogle Scholar
  19. 19.
    Neidle S, Read MA (2000) G-quadruplexes as therapeutic targets. Biopolymers 56:195–208CrossRefGoogle Scholar
  20. 20.
    Mergny J-L, Helene C (1998) G-quadruplex DNA: a target for drug design. Nat Genet 4:1366–1367CrossRefGoogle Scholar
  21. 21.
    Bearss DJ, Hurley LH, Von Hoff DD (2000) Telomere maintenance mechanisms as a target for drug development. Oncogene 19:6632–6641CrossRefGoogle Scholar
  22. 22.
    Gowan SM et al (2002) A G-Quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol Pharmacol 61:1154–1162CrossRefGoogle Scholar
  23. 23.
    Read MA et al (2001) Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci USA 98(9):4844–4849CrossRefGoogle Scholar
  24. 24.
    Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880CrossRefGoogle Scholar
  25. 25.
    Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ (2006) Human telomeric sequence forms a hybrid-type intra- molecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735CrossRefGoogle Scholar
  26. 26.
    Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d[AGGG(TTAGGG)(3)] in K+ solution. Bioorg Med Chem 14:5584–5591CrossRefGoogle Scholar
  27. 27.
    Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scafold. J Am Chem Soc 128:9963–9970CrossRefGoogle Scholar
  28. 28.
    Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282CrossRefGoogle Scholar
  29. 29.
    He Y, Neumann RD, Panyutin IG (2004) Intramolecular quadruplex conformation of human telomeric DNA assessed with 125I-radioprobing. Nucleic Acid Res 32:5359–5367CrossRefGoogle Scholar
  30. 30.
    Redon S, Bombard S, Elizondo-Riojas MA, Chottard JC (2003) Platinum cross-linking of adenines and guanines on the quadruplex structures of the AG3(T2AG3)3 and (T2AG3)4 human telomere sequences in Na+ and K+ solutions. Nucleic Acid Res 31:1605–1613CrossRefGoogle Scholar
  31. 31.
    Qi J, Shafer RH (2005) Covalent ligation studies on the human telomere quadruplex. Nucleic Acid Res 33:3185–3192CrossRefGoogle Scholar
  32. 32.
    Li J, Correia JJ, Wang L, Trent JO, Chaires JB (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acid Res 33:4649–4659CrossRefGoogle Scholar
  33. 33.
    Crooke ST (2004) Progress in antisence technology. Annu Rev Med 55:61–95CrossRefGoogle Scholar
  34. 34.
    Bondensgaard K, Petersen M, Singh SK, Rajwanshi VK, Kumar R, Wengel J, Jacobsen JP (2000) Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry 6:2687–2695CrossRefGoogle Scholar
  35. 35.
    Nielsen KE, Singh SK, Wengel J, Jacobsen JP (2000) Solution structure of an LNA hybridized to DNA: NMR study of the d(CT(L)GCT(L)T(L)CT(L)GC): d(GCAGAAGCAG) duplex containing four locked nucleotides. Bioconjug Chem 11:228–238CrossRefGoogle Scholar
  36. 36.
    Petersen M, Bondensgaard K, Wengel J, Jacobsen JP (2002) Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA: RNA hybrids. J Am Chem Soc 124:5974–5982CrossRefGoogle Scholar
  37. 37.
    Randazzo A, Esposito V, Ohlenschlager O, Ramachandran R, Mayol L (2004) NMR solution structure of a parallel LNA quadruplex. Nucleic Acids Res 32:3083–3092CrossRefGoogle Scholar
  38. 38.
    Sacca B, Lacroix L, Mergny J-L (2005) The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res 33:1182–1192CrossRefGoogle Scholar
  39. 39.
    Ivanova A, Rosch N (2007) The structure of LNA: DNA hybrids from molecular dynamics simulations: the effect of locked nucleotides. J Phys Chem A 111(38):9307–9319Google Scholar
  40. 40.
    Pande V, Nilsson L (2008) Insights into structure, dynamics and hydration of locked nucleic acid (LNA) strand-based duplexes from molecular dynamics simulation. Nucleic Acids Res 36(5):1508–1516Google Scholar
  41. 41.
    Cornell WD, Cieplak P, Baylyl CI, Gould IR, Merz JKM et al (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  42. 42.
    Price DJ, Brooks CL 3rd (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096–10103CrossRefGoogle Scholar
  43. 43.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  44. 44.
    Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55:620–634CrossRefGoogle Scholar
  45. 45.
    Yang L, Tan C, Hsieh M-J, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) New-generation Amber united-atom force field. J Phys Chem B 110:13166–13176CrossRefGoogle Scholar
  46. 46.
    Case DA, Cheathem TE, Daren T, Gohlke H, Luo R, Merz KM, Onufriev A et al (2005) The AMBER biomolecular simulation programs. J Comput Chem 26:1668–1688CrossRefGoogle Scholar
  47. 47.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  48. 48.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  49. 49.
    Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250CrossRefGoogle Scholar
  50. 50.
    Dubey KD, Ojha RP (2011) Binding free energy calculations with hybrid QM/MM methods for Abl kinase inhibitors. J Biol Phys 37:69–78CrossRefGoogle Scholar
  51. 51.
    Hud NV, Schultze P, Sklenar V, Feigon J (1999) Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex. J Mol Biol 285:233–243CrossRefGoogle Scholar
  52. 52.
    Spackova N, Berger I, Sponer J (1999) Nanosecond molecular dynamics simulation of parallel and antiparallel guanine quadruplex DNA molcules. J Am Chem Soc 121:5519–5534CrossRefGoogle Scholar
  53. 53.
    Chowdhury S, Bansal M (2001) G-quadruplex structure can be stable with only some coordination sites being occupied by cations: a six-nanosecond molecular dynamics study. J Phys Chem B 105:7572–7578CrossRefGoogle Scholar
  54. 54.
    Cavallari N, Calzolarii A, Garbesi A, Di Felice R (2006) Stability and migration of metal ions in G4-wires by molecular dynamics simulations. J Phys Chem B 110:26337–26348CrossRefGoogle Scholar
  55. 55.
    Agrawal S, Ojha RP, Maiti S (2008) Energetics of the human Tel-22 quadruplex—telomestatin interaction: a molecular dynamics study. J Phys Chem B 112(22):6828–6836CrossRefGoogle Scholar
  56. 56.
    Gu J, Leszczynski J, Bansal M (1999) A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study. Chem Phys Lett 311:209CrossRefGoogle Scholar
  57. 57.
    Arnott S, Chandrasekaran R, Marttila CM (1974) Structures for polyinosinic acid and polyguanylic acid. Biochem J 141:537–543Google Scholar
  58. 58.
    Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B (1997) The crystal structure of a parallel-stranded guanine Tetraplex at 0.95 Å resolution. J Mol Biol 273:171–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Amit Kumar Chaubey
    • 1
  • Kshatresh Dutta Dubey
    • 1
  • Rajendra Prasad Ojha
    • 1
  1. 1.Biophysics Unit, Department of PhysicsDDU Gorakhpur UniversityGorakhpurIndia

Personalised recommendations