Molecular docking and 3D-quantitative structure activity relationship analyses of peptidyl vinyl sulfones: Plasmodium Falciparum cysteine proteases inhibitors

  • Cátia Teixeira
  • José R. B. Gomes
  • Thierry Couesnon
  • Paula Gomes


Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model (q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields (q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.


Falcipain-2 Peptidyl vinyl sulfone Malaria CoMFA CoMSIA Docking 



We are grateful for the financial support from Fundação para a Ciência e a Tecnologia (FCT, Portugal) to CIQ-UP and CICECO, for the Program Ciência 2007 and for the Post-doctoral fellowship SFRH/BPD/62967/2009 awarded to Cátia Teixeira. We also thank FCT and the European Union (FEDER) for funding through Project refs. PTDC/QUI/65142/2006 and FCOMP-01-0124-FEDER-007418, respectively.


  1. 1.
    Das MK, Lumb V, Mittra P, Singh SS, Dash AP, Sharma YD (2010) J Antimicrob Chemother 65(6):1258CrossRefGoogle Scholar
  2. 2.
    Martin RE, Kirk K (2004) Mol Biol Evol 21(10):1938CrossRefGoogle Scholar
  3. 3.
    Wiesner J, Ortmann R, Jomaa H, Schlitzer M (2003) Angewandte Chemie 42(43):5274CrossRefGoogle Scholar
  4. 4.
    Sachs J, Malaney P (2002) Nature 415(6872):680CrossRefGoogle Scholar
  5. 5.
    Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Nature 419(6906):498CrossRefGoogle Scholar
  6. 6.
    Padmanaban G (2003) Adv Biochem Eng/Biotechnol 84:123CrossRefGoogle Scholar
  7. 7.
    Teixeira C, Gomes JR, Gomes P (2011) Curr Med Chem 18(10):1555CrossRefGoogle Scholar
  8. 8.
    Rosenthal PJ, Sijwali PS, Singh A, Shenai BR (2002) Curr Pharm Des 8(18):1659CrossRefGoogle Scholar
  9. 9.
    Rosenthal PJ (2004) Int J Parasitol 34(13–14):1489CrossRefGoogle Scholar
  10. 10.
    Subramanian S, Hardt M, Choe Y, Niles RK, Johansen EB, Legac J, Gut J, Kerr ID, Craik CS, Rosenthal PJ (2009) PloS one 4(4):e5156CrossRefGoogle Scholar
  11. 11.
    Batra S, Sabnis YA, Rosenthal PJ, Avery MA (2003) Bioorg Med Chem 11(10):2293CrossRefGoogle Scholar
  12. 12.
    Rosenthal PJ, Olson JE, Lee GK, Palmer JT, Klaus JL, Rasnick D (1996) Antimicrob Agents Chemother 40(7):1600Google Scholar
  13. 13.
    Singh A, Rosenthal PJ (2001) Antimicrob Agents Chemother 45(3):949CrossRefGoogle Scholar
  14. 14.
    Ettari R, Bova F, Zappala M, Grasso S, Micale N (2010) Med Res Rev 30(1):136Google Scholar
  15. 15.
    Olson JE, Lee GK, Semenov A, Rosenthal PJ (1999) Bioorg Med Chem 7(4):633CrossRefGoogle Scholar
  16. 16.
    Shenai BR, Lee BJ, Alvarez-Hernandez A, Chong PY, Emal CD, Neitz RJ, Roush WR, Rosenthal PJ (2003) Antimicrob Agents Chemother 47(1):154CrossRefGoogle Scholar
  17. 17.
    MarvinSketch 5.2.2, 2009, ChemAxon (
  18. 18.
    Sybyl X 1.3, Tripos Software, St. Louis, USAGoogle Scholar
  19. 19.
    Jones G, Willett P, Glen RC (1995) J Mol Biol 245(1):43CrossRefGoogle Scholar
  20. 20.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267(3):727CrossRefGoogle Scholar
  21. 21.
    Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, Rosenthal PJ, Brinen LS (2009) J Med Chem 52(3):852CrossRefGoogle Scholar
  22. 22.
    Case DA, Darden TA, Cheatham TE, Simmerling CLI, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry KF, Wong KF, Paesani F, Vanicek F, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San FranciscoGoogle Scholar
  23. 23.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24(16):1999CrossRefGoogle Scholar
  24. 24.
    Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, McKerrow JH, Craik CS, Rosenthal PJ, Brinen LS (2009) J Biol Chem 284(38):25697CrossRefGoogle Scholar
  25. 25.
    Holm L, Park J (2000) Bioinformatics 16(6):566CrossRefGoogle Scholar
  26. 26.
    Perkins R, Fang H, Tong W, Welsh WJ (2003) Environ Toxicol Chem/SETAC 22(8):1666CrossRefGoogle Scholar
  27. 27.
    Golbraikh A, Tropsha A (2002) J Mol Graph Model 20(4):269CrossRefGoogle Scholar
  28. 28.
    Saxena AK, Prathipati P (2003) SAR QSAR Environ Res 14(5–6):433CrossRefGoogle Scholar
  29. 29.
    Gramatica P (2004) Evaluation of different statistical approaches for the validation of quantitative structure-activity relationships. Final report for JRC Contract ECVA-CCR.496576-Z. European Chemicals Bureau, Joint Research Centre, European Commission, Ispra, ItalyGoogle Scholar
  30. 30.
    Bohm M, Sturzebecher J, Klebe G (1999) J Med Chem 42(3):458CrossRefGoogle Scholar
  31. 31.
    Mittal RR, McKinnon RA, Sorich MJ (2008) J Mol Model 14(1):59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Cátia Teixeira
    • 1
    • 2
  • José R. B. Gomes
    • 2
  • Thierry Couesnon
    • 3
  • Paula Gomes
    • 1
  1. 1.Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.CICECO, Universidade de AveiroAveiroPortugal
  3. 3.ITODYS, University Paris 7, CNRS UMR 7086Paris Cedex13France

Personalised recommendations