Advertisement

Journal of Computer-Aided Molecular Design

, Volume 25, Issue 8, pp 729–742 | Cite as

A QM/MM study of the binding of RAPTA ligands to cathepsin B

  • Antonella Ciancetta
  • Samuel Genheden
  • Ulf Ryde
Article

Abstract

We have carried out quantum mechanical (QM) and QM/MM (combined QM and molecular mechanics) calculations, as well as molecular dynamics (MD) simulations to study the binding of a series of six RAPTA (Ru(II)-arene-1,3,5-triaza-7-phosphatricyclo-[3.3.1.1] decane) complexes with different arene substituents to cathepsin B. The recently developed QM/MM-PBSA approach (QM/MM combined with Poisson–Boltzmann solvent-accessible surface area solvation) has been used to estimate binding affinities. The QM calculations reproduce the antitumour activities of the complexes with a correlation coefficient (r 2) of 0.35–0.86 after a conformational search. The QM/MM-PBSA method gave a better correlation (r 2 = 0.59) when the protein was fixed to the crystal structure, but more reasonable ligand structures and absolute binding energies were obtained if the protein was allowed to relax, indicating that the ligands are strained when the protein is kept fixed. In addition, the best correlation (r 2 = 0.80) was obtained when only the QM energies were used, which suggests that the MM and continuum solvation energies are not accurate enough to predict the binding of a charged metal complex to a charged protein. Taking into account the protein flexibility by means of MD simulations slightly improves the correlation (r 2 = 0.91), but the absolute energies are still too large and the results are sensitive to the details in the calculations, illustrating that it is hard to obtain stable predictions when full flexible protein is included in the calculations.

Keywords

QM/MM Ligand-binding affinities Ruthenium Anticancer drugs Cathepsin B Continuum solvation QM/MM-PBSA 

Notes

Acknowledgments

We thank Dr. Alessandro Marrone who provided us the initial docked structures. This investigation has been supported by grants from the Swedish research council (project 2010-5025) and from the Research school in pharmaceutical science. It has also been supported by computer resources of Lunarc at Lund University and HPC2N at Umeå University.

Supplementary material

10822_2011_9448_MOESM1_ESM.pdf (94 kb)
Supplementary material 1 (PDF 94 kb)

References

  1. 1.
    Hartinger CG, Dyson PJ (2009) Chem Soc Rev 38:391–401CrossRefGoogle Scholar
  2. 2.
    Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Med Res Rev 30:550–580Google Scholar
  3. 3.
    Gianferrara T, Bratsos I, Alessio E (2009) Dalton Trans 37:7588–7598CrossRefGoogle Scholar
  4. 4.
    Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99:2511–2534CrossRefGoogle Scholar
  5. 5.
    Hartinger CG, Zorbas–Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891–904CrossRefGoogle Scholar
  6. 6.
    Groessl M, Hartinger CG, Polec-Pawlak K, Jarosz M, Dyson PJ, Keppler BK (2008) Chem Biodivers 5:1609–1614CrossRefGoogle Scholar
  7. 7.
    Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S (1996) Intern J Cancer 68:60–66CrossRefGoogle Scholar
  8. 8.
    Rademaker-Lakhai JM, Van den Bongard D, Pluim D, Beijnen JH, Schellens JHM (2004) Clin Cancer Res 10:3717–3727CrossRefGoogle Scholar
  9. 9.
    Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Eur J Cancer 38:427–435CrossRefGoogle Scholar
  10. 10.
    Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 14:1796–1802CrossRefGoogle Scholar
  11. 11.
    Brindell M, Piotrowska D, Shoukry AA, Stochel G, Eldik R (2007) J Biol Inorg Chem 12:809–818CrossRefGoogle Scholar
  12. 12.
    Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99(9):2511–2534CrossRefGoogle Scholar
  13. 13.
    Dyson PJ, Sava G (2006) Dalton Trans 16:1929–1933CrossRefGoogle Scholar
  14. 14.
    Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 38:4764–4776CrossRefGoogle Scholar
  15. 15.
    Phillips AD, Gonsalvi L, Romerosa A, Vizza F, Peruzzini M (2004) Coord Chem Rev 248:955–993CrossRefGoogle Scholar
  16. 16.
    Bravo J, Bolaño S, Gonsalvi L, Peruzzini M (2010) Coord Chem Rev 254:555–607CrossRefGoogle Scholar
  17. 17.
    Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) Chem Commun 15:1396–1397CrossRefGoogle Scholar
  18. 18.
    Scolaro C, Bergamo A, Brescacin L, Delno R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) J Med Chem 48:4161–4171CrossRefGoogle Scholar
  19. 19.
    Bergamo A, Masi A, Dyson PJ, Sava G (2008) Intern J Oncol 33:1281–1289Google Scholar
  20. 20.
    Casini A, Gabbiani C, Michelucci E, Pieraccini G, Moneti G, Dyson PJ, Messori L (2009) J Biol Inorg Chem 14:761–770CrossRefGoogle Scholar
  21. 21.
    Casini A, Karotki A, Gabbiani C, Rugi F, Vasak M, Messori L, Dyson PJ (2009) Metallomics 1:434–441CrossRefGoogle Scholar
  22. 22.
    Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Lakka SS, Kin Y, Fuller GN, Yung AWK, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, Ali–Osman F, Rao JS (2001) Oncogene 20:3665–3673CrossRefGoogle Scholar
  23. 23.
    Koblinski JE, Ahram M, Sloane BF (2000) Clin Chim Acta 291:113–135CrossRefGoogle Scholar
  24. 24.
    Casini A, Gabbiani C, Sorrentino F, Rigobello MP, Bindoli A, Geldbach TJ, Marrone A, Re N, Hartinger CG, Dyson PJ, Messori L (2008) J Med Chem 51:6773–6781CrossRefGoogle Scholar
  25. 25.
    Casini A, Edafe F, Erlandsson M, Gonsalvi L, Ciancetta A, Re N, Ienco A, Messori L, Peruzzini M, Dyson PJ (2010) Dalton Trans 39:5556–5563CrossRefGoogle Scholar
  26. 26.
    Senn H, Thiel W (2009) Angew Chem Int Ed 48:1198–1229CrossRefGoogle Scholar
  27. 27.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefGoogle Scholar
  28. 28.
    Alex A, Finn P (1997) J Mol Struct Theochem 398:551–554CrossRefGoogle Scholar
  29. 29.
    Beierlein F, Lanig H, Schürer G, Horn AHC, Clark T (2003) Mol Phys 15:2469–2480CrossRefGoogle Scholar
  30. 30.
    Raha K, Peters MB, Wang B, Yu N, Wollacott AM, Westerhoff LM, Merz KM (2007) Drug Discov Today 12:725–731CrossRefGoogle Scholar
  31. 31.
    Menikarachchi LC, Gascón JA (2010) Curr Top Med Chem 10:46–54CrossRefGoogle Scholar
  32. 32.
    Söderhjelm P, Kongsted J, Genheden S, Ryde U (2010) Interdiscip Sci Comput Life Sci 2:21–37CrossRefGoogle Scholar
  33. 33.
    Gräter F, Schwarzl SM, Dejaegere A, Fischer S, Smith JC (2005) J Phys Chem B 109:10474–10483CrossRefGoogle Scholar
  34. 34.
    Wang M, Wong CF (2007) J Chem Phys 126:026101 3 pagesCrossRefGoogle Scholar
  35. 35.
    Kaukonen M, Söderhjelm P, Heimdal J, Ryde U (2008) J Phys Chem B 112:12537–12548CrossRefGoogle Scholar
  36. 36.
    Retegan M, Milet A, Jamet H (2009) J Chem Inf Model 49:963–971CrossRefGoogle Scholar
  37. 37.
    Shi J, Lu Z, Zhang Q, Wang M, Wong CF, Liu J (2010) J Theor Comput Chem 9:543–559CrossRefGoogle Scholar
  38. 38.
    Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S (2005) J Med Chem 48:5437–5447CrossRefGoogle Scholar
  39. 39.
    Khandelwal A, Balaz S (2007) Proteins 69:326–339CrossRefGoogle Scholar
  40. 40.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401 4 pagesCrossRefGoogle Scholar
  41. 41.
    Treutler O, Ahlrichs R (1995) J Chem Phys 102:346–354CrossRefGoogle Scholar
  42. 42.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  43. 43.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  44. 44.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 242:652–660CrossRefGoogle Scholar
  45. 45.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124CrossRefGoogle Scholar
  46. 46.
    Klamt A, Schüürmann J (1993) J Chem Soc Perkin Trans 2:799–805Google Scholar
  47. 47.
    Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2:2187–2193CrossRefGoogle Scholar
  48. 48.
    Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) J Phys Chem A 102:5074–5085CrossRefGoogle Scholar
  49. 49.
    Jensen F (1999) Introduction to computational chemistry. Wiley, ChichesterGoogle Scholar
  50. 50.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  51. 51.
    Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351CrossRefGoogle Scholar
  52. 52.
    Huber CP, Campbell RL, Hasnain S, Hirama T to be published PDB file 2IPPGoogle Scholar
  53. 53.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San FranciscoGoogle Scholar
  54. 54.
    Li H, Robertson AD, Jensen JH (2005) Proteins 61:704–721CrossRefGoogle Scholar
  55. 55.
    Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  56. 56.
    Ryde U (1996) J Comput Aided Mol Des 10:153–164CrossRefGoogle Scholar
  57. 57.
    Ryde U, Olsson MHM (2001) Intern J Quant Chem 81:335–347CrossRefGoogle Scholar
  58. 58.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comp Chem 11:431–439CrossRefGoogle Scholar
  59. 59.
    Reuter NI, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720–1735CrossRefGoogle Scholar
  60. 60.
    Hu L, Söderhjelm P, Ryde U (2011) J Chem Theory Comput 7:761–777CrossRefGoogle Scholar
  61. 61.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363CrossRefGoogle Scholar
  62. 62.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  63. 63.
    Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074CrossRefGoogle Scholar
  64. 64.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins: Struct Funct Bioinform 65:712–725Google Scholar
  65. 65.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  66. 66.
    Bartolotti LJ, Pedersen LG, Charifson PS (1991) J Comput Chem 12:1125–1128CrossRefGoogle Scholar
  67. 67.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  68. 68.
    Sigfridsson E, Ryde U (1998) J Comp Chem 19:377–395CrossRefGoogle Scholar
  69. 69.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, WallingfordGoogle Scholar
  70. 70.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  71. 71.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341CrossRefGoogle Scholar
  72. 72.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  73. 73.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  74. 74.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  75. 75.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatman TE (2000) Acc Chem Res 33:889–897CrossRefGoogle Scholar
  76. 76.
    Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394CrossRefGoogle Scholar
  77. 77.
    Connolly ML (1983) J Appl Cryst 16:548–558CrossRefGoogle Scholar
  78. 78.
    Kuhn B, Kollman PA (2000) J Med Chem 43:3786–3791CrossRefGoogle Scholar
  79. 79.
    Scolaro C, Hartinger CG, Allerdyce CS, Keppler BK, Dyson PJ (2008) J Inorg Biochem 102:1743–1748CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Antonella Ciancetta
    • 1
  • Samuel Genheden
    • 2
  • Ulf Ryde
    • 2
  1. 1.Dipartimento di Scienze del FarmacoUniversità degli Studi “G. D’Annunzio” Chieti-PescaraChietiItaly
  2. 2.Department of Theoretical ChemistryLund University, Chemical CentreLundSweden

Personalised recommendations