Advertisement

Journal of Computer-Aided Molecular Design

, Volume 23, Issue 6, pp 343–354 | Cite as

DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect

  • Pubalee Sarmah
  • Ramesh C. Deka
Article

Abstract

Cytotoxic activities of cis-platinum complexes against parental and resistant ovarian cancer cell lines were investigated by quantitative structure-activity relationship (QSAR) analysis using density functional theory (DFT) based descriptors. The calculated parameters were found to increase the predictability of each QSAR model with incorporation of solvent effects indicating its importance in studying biological activity. Given the importance of logarithmic n-octanol/water partition coefficient (log P o/w) in drug metabolism and cellular uptake, we modeled the log P o/w of 24 platinum complexes with different leaving and carrier ligands by the quantitative structure-property relationship (QSPR) analysis against five different concentrations of MeOH using DFT and molecular mechanics derived descriptors. The log P o/w values of an additional set of 20 platinum complexes were also modeled with the same descriptors. We investigated the predictability of the model by calculating log P o/w of four compounds in the test set and found their predicted values to be in good agreement with the experimental values. The QSPR analyses performed on 24 complexes, combining the training and test sets, also provided significant values for the statistical parameters. The solvent medium played an important role in QSPR analysis by increasing the internal predictive ability of the models.

Keywords

QSAR QSPR cis-Platinum complexes DFT Solvent effect 

Notes

Acknowledgments

The authors thank Council of Scientific and Industrial Research (CSIR), New Delhi and Department of Science and Technology (DST), New Delhi for some financial support. The authors also thank Mrs Surobhi Deka, Department of Mathematical Sciences, Tezpur University for fruitful discussion.

Supplementary material

10822_2009_9265_MOESM1_ESM.doc (60 kb)
(DOC 60 kb)

References

  1. 1.
    Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Nature 222:385. doi: 10.1038/222385a0 CrossRefGoogle Scholar
  2. 2.
    Reedijk J (2003) Proc Natl Acad Sci USA 100:3611. doi: 10.1073/pnas.0737293100 CrossRefGoogle Scholar
  3. 3.
    Wang D, Lippard SJ (2005) Nat Rev Drug Discovery 4:307CrossRefGoogle Scholar
  4. 4.
    Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467CrossRefGoogle Scholar
  5. 5.
    Wong E, Giandomenico CM (1999) Chem Rev 99:2451. doi: 10.1021/cr980420v CrossRefGoogle Scholar
  6. 6.
    Lebwohl D, Canetta R (1998) Eur J Cancer 34:1522. doi: 10.1016/S0959-8049(98)00224-X CrossRefGoogle Scholar
  7. 7.
    Monti E, Gariboldi M, Maiocchi A, Marengo E, Cassino C, Gabano E, Osella D (2005) J Med Chem 48:857. doi: 10.1021/jm049508t CrossRefGoogle Scholar
  8. 8.
    Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC (2000) Br J Cancer 82:966. doi: 10.1054/bjoc.1999.1026 CrossRefGoogle Scholar
  9. 9.
    Platts JA, Oldfield SP, Reif MM, Palmucci A, Gabano E, Osella D (2006) J Inorg Biochem 100:1199. doi: 10.1016/j.jinorgbio.2006.01.035 CrossRefGoogle Scholar
  10. 10.
    Wan J, Zhang L, Yang GF (2004) J Comput Chem 25:1827. doi: 10.1002/jcc.20122 CrossRefGoogle Scholar
  11. 11.
    Srivastava HK, Pasha FA, Singh PP (2005) Int J Quantum Chem 103:237. doi: 10.1002/qua.20506 CrossRefGoogle Scholar
  12. 12.
    Karelson M, Lobanov VS (1996) Chem Rev 96:1027. doi: 10.1021/cr950202r CrossRefGoogle Scholar
  13. 13.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512CrossRefGoogle Scholar
  14. 14.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801CrossRefGoogle Scholar
  15. 15.
    Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922CrossRefGoogle Scholar
  16. 16.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049CrossRefGoogle Scholar
  17. 17.
    Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973CrossRefGoogle Scholar
  18. 18.
    Chatterjee A, Balaji T, Matsunaga H, Mizukami F (2006) J Mol Graph Model 25:208CrossRefGoogle Scholar
  19. 19.
    Roos G, Loverix S, De Proft F, Wyns L, Geerlings P (2003) J Phys Chem A 107:6828CrossRefGoogle Scholar
  20. 20.
    Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg Med Chem 12:5533CrossRefGoogle Scholar
  21. 21.
    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Bioorg Med Chem 14:1021CrossRefGoogle Scholar
  22. 22.
    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Chem Res Toxicol 19:356CrossRefGoogle Scholar
  23. 23.
    Wysokiński R, Michalska D (2001) J Comput Chem 22:901CrossRefGoogle Scholar
  24. 24.
    Michalska D, Wysokiński R (2005) Chem Phys Lett 403:211CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378CrossRefGoogle Scholar
  26. 26.
    Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2003) J Chem Phys 11:10584CrossRefGoogle Scholar
  27. 27.
    Matsui T, Shigeta Y, Hirao K (2006) Chem Phys Lett 423:331CrossRefGoogle Scholar
  28. 28.
    Robertazzi A, Platts JA (2006) Chem Eur J 12:5747CrossRefGoogle Scholar
  29. 29.
    Burda JV, Leszczynski J (2003) Inorg Chem 42:7162CrossRefGoogle Scholar
  30. 30.
    Raber J, Zhu CB, Eriksson LA (2005) J Phys Chem B 109:11006CrossRefGoogle Scholar
  31. 31.
    Magistrato A, Ruggerone P, Spiegel K, Carloni P, Reedijk J (2006) J Phys Chem B 110:3604CrossRefGoogle Scholar
  32. 32.
    Mantri Y, Lippard SJ, Baik M-H (2007) J Am Chem Soc 129:5023CrossRefGoogle Scholar
  33. 33.
    Platts JA, Hibbs DE, Hambley TW, Hall MD (2001) J Med Chem 44:472CrossRefGoogle Scholar
  34. 34.
    Sarmah P, Deka RC (2008) Int J Quantum Chem 108:1400CrossRefGoogle Scholar
  35. 35.
    Koopmans TA (1933) Physica 1:104CrossRefGoogle Scholar
  36. 36.
    Mendez F, Gazquez JL (1994) J Am Chem Soc 116:9298CrossRefGoogle Scholar
  37. 37.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708CrossRefGoogle Scholar
  38. 38.
    Delley B (1990) J Chem Phys 92:508CrossRefGoogle Scholar
  39. 39.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  40. 40.
    Lee C, Yang W, Parr RG (1988) Phys Rev 37:785CrossRefGoogle Scholar
  41. 41.
    Hehre WJ, Radom L, Schlyer PVR, Pople JA (1986) Ab Initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  42. 42.
    Hirshfeld FL (1977) Theor Chim Acta 44:129CrossRefGoogle Scholar
  43. 43.
    Andzelm J, Koelmel C, Klamt A (1995) J Chem Phys 103:9312CrossRefGoogle Scholar
  44. 44.
    HyperChem Release 7 (2002) Hypercube; http://www.hyper.com
  45. 45.
    MATLAB (1999) The Math Works, Inc., Natick, USAGoogle Scholar
  46. 46.
    Penrose R (1955) Proc Cambridge Philos Soc 51:406CrossRefGoogle Scholar
  47. 47.
    Milburn GHW, Truter MR (1966) J Chem Soc A 1609. doi: 10.1039/J19660001609 Google Scholar
  48. 48.
    Wysokiński R, Michalska D (2001) J Comput Chem 9:901CrossRefGoogle Scholar
  49. 49.
    Soltzberg L, Margulis TM (1971) J Chem Phys 55:4907CrossRefGoogle Scholar
  50. 50.
    Beagley B, Cruickshank DWJ, McAuliffe CA, Pritchard RG, Zaki AM, Beddoes RL, Cernik RJ, Mills OS (1985) J Mol Struct 130:97CrossRefGoogle Scholar
  51. 51.
    Bruck MA, Bau R (1984) Inorg Chim Acta 92:279CrossRefGoogle Scholar
  52. 52.
    Cho DH, Lee SK, Kim BT, No KT (2001) Bull Korean Chem Soc 22:388Google Scholar
  53. 53.
    Yao SW, Lopes VHC, Fernandez F, Garcia-Mera X, Morales M, Rodriguez-Borges JE, Cordeiroa MNDS (2003) Bioorg Med Chem 11:4999CrossRefGoogle Scholar
  54. 54.
    Wold S (1991) Quantum Struct-Act Relat 10:191CrossRefGoogle Scholar
  55. 55.
    Dietrich SW, Dreyer ND, Hansch C, Bentley DL (1980) J Med Chem 23:1201CrossRefGoogle Scholar
  56. 56.
    Cornish-Bowden A, Wong JT (1978) Biochem J 175:969Google Scholar
  57. 57.
    Souchard JP, Ha TTB, Cros S, Johnson NP (1991) J Med Chem 34:863CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Chemical SciencesTezpur UniversityNapaam, TezpurIndia

Personalised recommendations