Skip to main content

Advertisement

Log in

DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Cytotoxic activities of cis-platinum complexes against parental and resistant ovarian cancer cell lines were investigated by quantitative structure-activity relationship (QSAR) analysis using density functional theory (DFT) based descriptors. The calculated parameters were found to increase the predictability of each QSAR model with incorporation of solvent effects indicating its importance in studying biological activity. Given the importance of logarithmic n-octanol/water partition coefficient (log P o/w) in drug metabolism and cellular uptake, we modeled the log P o/w of 24 platinum complexes with different leaving and carrier ligands by the quantitative structure-property relationship (QSPR) analysis against five different concentrations of MeOH using DFT and molecular mechanics derived descriptors. The log P o/w values of an additional set of 20 platinum complexes were also modeled with the same descriptors. We investigated the predictability of the model by calculating log P o/w of four compounds in the test set and found their predicted values to be in good agreement with the experimental values. The QSPR analyses performed on 24 complexes, combining the training and test sets, also provided significant values for the statistical parameters. The solvent medium played an important role in QSPR analysis by increasing the internal predictive ability of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Nature 222:385. doi:10.1038/222385a0

    Article  CAS  Google Scholar 

  2. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611. doi:10.1073/pnas.0737293100

    Article  CAS  Google Scholar 

  3. Wang D, Lippard SJ (2005) Nat Rev Drug Discovery 4:307

    Article  CAS  Google Scholar 

  4. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467

    Article  CAS  Google Scholar 

  5. Wong E, Giandomenico CM (1999) Chem Rev 99:2451. doi:10.1021/cr980420v

    Article  CAS  Google Scholar 

  6. Lebwohl D, Canetta R (1998) Eur J Cancer 34:1522. doi:10.1016/S0959-8049(98)00224-X

    Article  CAS  Google Scholar 

  7. Monti E, Gariboldi M, Maiocchi A, Marengo E, Cassino C, Gabano E, Osella D (2005) J Med Chem 48:857. doi:10.1021/jm049508t

    Article  CAS  Google Scholar 

  8. Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC (2000) Br J Cancer 82:966. doi:10.1054/bjoc.1999.1026

    Article  CAS  Google Scholar 

  9. Platts JA, Oldfield SP, Reif MM, Palmucci A, Gabano E, Osella D (2006) J Inorg Biochem 100:1199. doi:10.1016/j.jinorgbio.2006.01.035

    Article  CAS  Google Scholar 

  10. Wan J, Zhang L, Yang GF (2004) J Comput Chem 25:1827. doi:10.1002/jcc.20122

    Article  CAS  Google Scholar 

  11. Srivastava HK, Pasha FA, Singh PP (2005) Int J Quantum Chem 103:237. doi:10.1002/qua.20506

    Article  CAS  Google Scholar 

  12. Karelson M, Lobanov VS (1996) Chem Rev 96:1027. doi:10.1021/cr950202r

    Article  CAS  Google Scholar 

  13. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  14. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  15. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  16. Parr RG, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  17. Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973

    Article  CAS  Google Scholar 

  18. Chatterjee A, Balaji T, Matsunaga H, Mizukami F (2006) J Mol Graph Model 25:208

    Article  CAS  Google Scholar 

  19. Roos G, Loverix S, De Proft F, Wyns L, Geerlings P (2003) J Phys Chem A 107:6828

    Article  CAS  Google Scholar 

  20. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg Med Chem 12:5533

    Article  CAS  Google Scholar 

  21. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Bioorg Med Chem 14:1021

    Article  CAS  Google Scholar 

  22. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Chem Res Toxicol 19:356

    Article  CAS  Google Scholar 

  23. Wysokiński R, Michalska D (2001) J Comput Chem 22:901

    Article  Google Scholar 

  24. Michalska D, Wysokiński R (2005) Chem Phys Lett 403:211

    Article  CAS  Google Scholar 

  25. Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378

    Article  CAS  Google Scholar 

  26. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2003) J Chem Phys 11:10584

    Article  CAS  Google Scholar 

  27. Matsui T, Shigeta Y, Hirao K (2006) Chem Phys Lett 423:331

    Article  CAS  Google Scholar 

  28. Robertazzi A, Platts JA (2006) Chem Eur J 12:5747

    Article  CAS  Google Scholar 

  29. Burda JV, Leszczynski J (2003) Inorg Chem 42:7162

    Article  CAS  Google Scholar 

  30. Raber J, Zhu CB, Eriksson LA (2005) J Phys Chem B 109:11006

    Article  CAS  Google Scholar 

  31. Magistrato A, Ruggerone P, Spiegel K, Carloni P, Reedijk J (2006) J Phys Chem B 110:3604

    Article  CAS  Google Scholar 

  32. Mantri Y, Lippard SJ, Baik M-H (2007) J Am Chem Soc 129:5023

    Article  CAS  Google Scholar 

  33. Platts JA, Hibbs DE, Hambley TW, Hall MD (2001) J Med Chem 44:472

    Article  CAS  Google Scholar 

  34. Sarmah P, Deka RC (2008) Int J Quantum Chem 108:1400

    Article  CAS  Google Scholar 

  35. Koopmans TA (1933) Physica 1:104

    Article  CAS  Google Scholar 

  36. Mendez F, Gazquez JL (1994) J Am Chem Soc 116:9298

    Article  CAS  Google Scholar 

  37. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708

    Article  CAS  Google Scholar 

  38. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  39. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Phys Rev 37:785

    Article  CAS  Google Scholar 

  41. Hehre WJ, Radom L, Schlyer PVR, Pople JA (1986) Ab Initio molecular orbital theory. Wiley, New York

    Google Scholar 

  42. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  43. Andzelm J, Koelmel C, Klamt A (1995) J Chem Phys 103:9312

    Article  CAS  Google Scholar 

  44. HyperChem Release 7 (2002) Hypercube; http://www.hyper.com

  45. MATLAB (1999) The Math Works, Inc., Natick, USA

  46. Penrose R (1955) Proc Cambridge Philos Soc 51:406

    Article  Google Scholar 

  47. Milburn GHW, Truter MR (1966) J Chem Soc A 1609. doi:10.1039/J19660001609

    Google Scholar 

  48. Wysokiński R, Michalska D (2001) J Comput Chem 9:901

    Article  Google Scholar 

  49. Soltzberg L, Margulis TM (1971) J Chem Phys 55:4907

    Article  CAS  Google Scholar 

  50. Beagley B, Cruickshank DWJ, McAuliffe CA, Pritchard RG, Zaki AM, Beddoes RL, Cernik RJ, Mills OS (1985) J Mol Struct 130:97

    Article  CAS  Google Scholar 

  51. Bruck MA, Bau R (1984) Inorg Chim Acta 92:279

    Article  CAS  Google Scholar 

  52. Cho DH, Lee SK, Kim BT, No KT (2001) Bull Korean Chem Soc 22:388

    CAS  Google Scholar 

  53. Yao SW, Lopes VHC, Fernandez F, Garcia-Mera X, Morales M, Rodriguez-Borges JE, Cordeiroa MNDS (2003) Bioorg Med Chem 11:4999

    Article  CAS  Google Scholar 

  54. Wold S (1991) Quantum Struct-Act Relat 10:191

    Article  CAS  Google Scholar 

  55. Dietrich SW, Dreyer ND, Hansch C, Bentley DL (1980) J Med Chem 23:1201

    Article  CAS  Google Scholar 

  56. Cornish-Bowden A, Wong JT (1978) Biochem J 175:969

    CAS  Google Scholar 

  57. Souchard JP, Ha TTB, Cros S, Johnson NP (1991) J Med Chem 34:863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Council of Scientific and Industrial Research (CSIR), New Delhi and Department of Science and Technology (DST), New Delhi for some financial support. The authors also thank Mrs Surobhi Deka, Department of Mathematical Sciences, Tezpur University for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmah, P., Deka, R.C. DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect. J Comput Aided Mol Des 23, 343–354 (2009). https://doi.org/10.1007/s10822-009-9265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9265-4

Keywords

Navigation