Journal of Computer-Aided Molecular Design

, Volume 22, Issue 8, pp 563–570 | Cite as

Computational prediction of ion permeation characteristics in the glycine receptor modified by photo-sensitive compounds

  • Mary Hongying Cheng
  • Rob D. Coalson
  • Michael Cascio
  • Maria Kurnikova


We conduct computational analyses of ion permeation characteristics in a model glycine receptor (GlyR) modified by photo-sensitive compounds. In particular, we consider hypothetical attachment to the channel of charge-neutral chemical groups which can be photo-activated by shining light of an appropriate wavelength on the system. After illumination, the attached molecules become charged via a photodissociation process or excited into a charge-separated state (thus generating a significant electric dipole). We carry out Brownian Dynamics simulations of ion flow through the channel in the presence of the additional charges generated in this fashion. Based on these calculations, we predict that photo-activation of appropriately positioned photo-sensitive compounds near the channel mouth can significantly modify the rate of ion permeation and the current rectification ratio. Possible implications for GlyR-based device designs are briefly discussed.


Engineering glycine receptor Brownian dynamics Computational modeling Ion permeation Photo-sensitive compound 



We wish to thank S. Essiz for her valuable assistance preparing the figures. We gratefully acknowledge computational support from Center for Molecular and Materials Simulation (CMMS) at the University of Pittsburgh. The work of MHC and RDC was supported in part by NSF Grant No.CHE-0518044 and ARO-MURI Grant No. DADD19-02-1-0227.


  1. 1.
    Lynch JW (2004) Physiol Rev 84:1051CrossRefGoogle Scholar
  2. 2.
    Cascio M (2004) J Biol Chem 279:19383CrossRefGoogle Scholar
  3. 3.
    Keramidas A, Moorhouse AJ, Peter PR, Barry PH (2004) Prog Biophys & Mol Biol 86:161CrossRefGoogle Scholar
  4. 4.
    Bartels E, Wasserman NH, Erlanger BF (1971) PNAS 68:1820CrossRefGoogle Scholar
  5. 5.
    Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1980) J Gen Physiol 75:207CrossRefGoogle Scholar
  6. 6.
    Banghart MR, Volgraf M, Trauner D (2006) Biochemistry 45:15129CrossRefGoogle Scholar
  7. 7.
    Kocer A, Walko M, Meijberg W, Feringa B (2005) Science 309:755CrossRefGoogle Scholar
  8. 8.
    Borisenko V, Burns DC, Zhang Z, Woolley GA (2000) J Am Chem Soc 122:6364CrossRefGoogle Scholar
  9. 9.
    Lougheed T, Borisenko V, Hennig T, Rueck-Braun K, Woolley GA (2004) Org Biomol Chem 2:2798CrossRefGoogle Scholar
  10. 10.
    Cheng MH, Cascio M, Coalson RD (2005) Biophys J 89:1669CrossRefGoogle Scholar
  11. 11.
    Cheng MH, Cascio M, Coalson RD (2007) Proteins 68:581CrossRefGoogle Scholar
  12. 12.
    Cheng MH, Coalson RD, Cascio M (2008) Proteins 71:972CrossRefGoogle Scholar
  13. 13.
    Graf P, Nitzan A, Kurnikova MG, Coalson RD (2000) J Phys Chem B 104:12324CrossRefGoogle Scholar
  14. 14.
    Cheng MH, Mamonov AB, Dukes JW, Coalson RD (2007) J Phys Chem B 111:5956CrossRefGoogle Scholar
  15. 15.
    Cheng MH, Coalson RD (2005) J Phys Chem B 109(1):488CrossRefGoogle Scholar
  16. 16.
    Graf P, Kurnikova MG, Coalson RD, Nitzan A (2004) J Phys Chem B 108:2006CrossRefGoogle Scholar
  17. 17.
    Lobo IA, Mascia MP, Trudell JR, Harris RA (2004) J Biol Chem 279:33919CrossRefGoogle Scholar
  18. 18.
    Lynch JW, Han NL, Haddrill J, Pierce KD, Schofield PR (2001) J Neurosci 21:2589Google Scholar
  19. 19.
    Cascio M, Shenkel S, Grodzicki RL, Sigworth FJ, Fox RO (2001) J Biol Chem 276:20981CrossRefGoogle Scholar
  20. 20.
    Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH (2002) J Gen Physiol 119:393CrossRefGoogle Scholar
  21. 21.
    Moorhouse AJ, Keramidas A, Zaykin A, Schofield PR, Barry PH (2002) J Gen Physiol 119:411CrossRefGoogle Scholar
  22. 22.
    O’Mara M, Barry PH, Chung SH (2003) PNAS 100:4310CrossRefGoogle Scholar
  23. 23.
    Yushmanov VE, Mandal PK, Liu Z, Tang P, Xu Y (2003) Biochemistry 42:3989CrossRefGoogle Scholar
  24. 24.
    Unwin N (2005) J Mol Biol 346:967CrossRefGoogle Scholar
  25. 25.
    Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) Biophys J 76:642Google Scholar
  26. 26.
    Im W, Roux B (2002) J Mol Biol 322:851CrossRefGoogle Scholar
  27. 27.
    Corry B, O’Mara M, Chung S-H (2004) Biophys J 86:846CrossRefGoogle Scholar
  28. 28.
    Cardenas AE, Coalson RD, Kurnikova MG (2000) Biophys J 79:80Google Scholar
  29. 29.
    Coalson RD, Kurnikova MG (2005) IEEE Trans Nanobiol 88:3745Google Scholar
  30. 30.
    Jun S, Becker JS, Yonkunas M, Coalson RD, Saxena S (2006) Biochemistry 45:11666CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mary Hongying Cheng
    • 1
  • Rob D. Coalson
    • 1
  • Michael Cascio
    • 2
  • Maria Kurnikova
    • 3
  1. 1.Department of ChemistryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations