Skip to main content
Log in

Computational prediction of ion permeation characteristics in the glycine receptor modified by photo-sensitive compounds

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We conduct computational analyses of ion permeation characteristics in a model glycine receptor (GlyR) modified by photo-sensitive compounds. In particular, we consider hypothetical attachment to the channel of charge-neutral chemical groups which can be photo-activated by shining light of an appropriate wavelength on the system. After illumination, the attached molecules become charged via a photodissociation process or excited into a charge-separated state (thus generating a significant electric dipole). We carry out Brownian Dynamics simulations of ion flow through the channel in the presence of the additional charges generated in this fashion. Based on these calculations, we predict that photo-activation of appropriately positioned photo-sensitive compounds near the channel mouth can significantly modify the rate of ion permeation and the current rectification ratio. Possible implications for GlyR-based device designs are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lynch JW (2004) Physiol Rev 84:1051

    Article  CAS  Google Scholar 

  2. Cascio M (2004) J Biol Chem 279:19383

    Article  CAS  Google Scholar 

  3. Keramidas A, Moorhouse AJ, Peter PR, Barry PH (2004) Prog Biophys & Mol Biol 86:161

    Article  CAS  Google Scholar 

  4. Bartels E, Wasserman NH, Erlanger BF (1971) PNAS 68:1820

    Article  CAS  Google Scholar 

  5. Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1980) J Gen Physiol 75:207

    Article  CAS  Google Scholar 

  6. Banghart MR, Volgraf M, Trauner D (2006) Biochemistry 45:15129

    Article  CAS  Google Scholar 

  7. Kocer A, Walko M, Meijberg W, Feringa B (2005) Science 309:755

    Article  CAS  Google Scholar 

  8. Borisenko V, Burns DC, Zhang Z, Woolley GA (2000) J Am Chem Soc 122:6364

    Article  CAS  Google Scholar 

  9. Lougheed T, Borisenko V, Hennig T, Rueck-Braun K, Woolley GA (2004) Org Biomol Chem 2:2798

    Article  CAS  Google Scholar 

  10. Cheng MH, Cascio M, Coalson RD (2005) Biophys J 89:1669

    Article  CAS  Google Scholar 

  11. Cheng MH, Cascio M, Coalson RD (2007) Proteins 68:581

    Article  CAS  Google Scholar 

  12. Cheng MH, Coalson RD, Cascio M (2008) Proteins 71:972

    Article  CAS  Google Scholar 

  13. Graf P, Nitzan A, Kurnikova MG, Coalson RD (2000) J Phys Chem B 104:12324

    Article  CAS  Google Scholar 

  14. Cheng MH, Mamonov AB, Dukes JW, Coalson RD (2007) J Phys Chem B 111:5956

    Article  CAS  Google Scholar 

  15. Cheng MH, Coalson RD (2005) J Phys Chem B 109(1):488

    Article  CAS  Google Scholar 

  16. Graf P, Kurnikova MG, Coalson RD, Nitzan A (2004) J Phys Chem B 108:2006

    Article  CAS  Google Scholar 

  17. Lobo IA, Mascia MP, Trudell JR, Harris RA (2004) J Biol Chem 279:33919

    Article  CAS  Google Scholar 

  18. Lynch JW, Han NL, Haddrill J, Pierce KD, Schofield PR (2001) J Neurosci 21:2589

    CAS  Google Scholar 

  19. Cascio M, Shenkel S, Grodzicki RL, Sigworth FJ, Fox RO (2001) J Biol Chem 276:20981

    Article  CAS  Google Scholar 

  20. Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH (2002) J Gen Physiol 119:393

    Article  CAS  Google Scholar 

  21. Moorhouse AJ, Keramidas A, Zaykin A, Schofield PR, Barry PH (2002) J Gen Physiol 119:411

    Article  CAS  Google Scholar 

  22. O’Mara M, Barry PH, Chung SH (2003) PNAS 100:4310

    Article  CAS  Google Scholar 

  23. Yushmanov VE, Mandal PK, Liu Z, Tang P, Xu Y (2003) Biochemistry 42:3989

    Article  CAS  Google Scholar 

  24. Unwin N (2005) J Mol Biol 346:967

    Article  CAS  Google Scholar 

  25. Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) Biophys J 76:642

    CAS  Google Scholar 

  26. Im W, Roux B (2002) J Mol Biol 322:851

    Article  CAS  Google Scholar 

  27. Corry B, O’Mara M, Chung S-H (2004) Biophys J 86:846

    Article  CAS  Google Scholar 

  28. Cardenas AE, Coalson RD, Kurnikova MG (2000) Biophys J 79:80

    CAS  Google Scholar 

  29. Coalson RD, Kurnikova MG (2005) IEEE Trans Nanobiol 88:3745

    Google Scholar 

  30. Jun S, Becker JS, Yonkunas M, Coalson RD, Saxena S (2006) Biochemistry 45:11666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Essiz for her valuable assistance preparing the figures. We gratefully acknowledge computational support from Center for Molecular and Materials Simulation (CMMS) at the University of Pittsburgh. The work of MHC and RDC was supported in part by NSF Grant No.CHE-0518044 and ARO-MURI Grant No. DADD19-02-1-0227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob D. Coalson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M.H., Coalson, R.D., Cascio, M. et al. Computational prediction of ion permeation characteristics in the glycine receptor modified by photo-sensitive compounds. J Comput Aided Mol Des 22, 563–570 (2008). https://doi.org/10.1007/s10822-008-9200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9200-0

Keywords

Navigation