Journal of Computer-Aided Molecular Design

, Volume 22, Issue 8, pp 523–540 | Cite as

Bond-based linear indices in QSAR: computational discovery of novel anti-trichomonal compounds

  • Yovani Marrero-Ponce
  • Alfredo Meneses-Marcel
  • Oscar M. Rivera-Borroto
  • Ramón García-Domenech
  • Jesus Vicente De Julián-Ortiz
  • Alina Montero
  • José Antonio Escario
  • Alicia Gómez Barrio
  • David Montero Pereira
  • Juan José Nogal
  • Ricardo Grau
  • Francisco Torrens
  • Christian Vogel
  • Vicente J. Arán


Trichomonas vaginalis (Tv) is the causative agent of the most common, non-viral, sexually transmitted disease in women and men worldwide. Since 1959, metronidazole (MTZ) has been the drug of choice in the systemic treatment of trichomoniasis. However, resistance to MTZ in some patients and the great cost associated with the development of new trichomonacidals make necessary the development of computational methods that shorten the drug discovery pipeline. Toward this end, bond-based linear indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis were used to discover novel trichomonacidal chemicals. The obtained models, using non-stochastic and stochastic indices, are able to classify correctly 89.01% (87.50%) and 82.42% (84.38%) of the chemicals in the training (test) sets, respectively. These results validate the models for their use in the ligand-based virtual screening. In addition, they show large Matthews’ correlation coefficients (C) of 0.78 (0.71) and 0.65 (0.65) for the training (test) sets, correspondingly. The result of predictions on the 10% full-out cross-validation test also evidences the robustness of the obtained models. Later, both models are applied to the virtual screening of 12 compounds already proved against Tv. As a result, they correctly classify 10 out of 12 (83.33%) and 9 out of 12 (75.00%) of the chemicals, respectively; which is the most important criterion for validating the models. Besides, these classification functions are applied to a library of seven chemicals in order to find novel antitrichomonal agents. These compounds are synthesized and tested for in vitro activity against Tv. As a result, experimental observations approached to theoretical predictions, since it was obtained a correct classification of 85.71% (6 out of 7) of the chemicals. Moreover, out of the seven compounds that are screened, synthesized and biologically assayed, six compounds (VA7-34, VA7-35, VA7-37, VA7-38, VA7-68, VA7-70) show pronounced cytocidal activity at the concentration of 100 μg/ml at 24 h (48 h) within the range of 98.66%–100% (99.40%–100%), while only two molecules (chemicals VA7-37 and VA7-38) show high cytocidal activity at the concentration of 10 μg/ml at 24 h (48 h): 98.38% (94.23%) and 97.59% (98.10%), correspondingly. The LDA-assisted QSAR models presented here could significantly reduce the number of synthesized and tested compounds and could increase the chance of finding new chemical entities with anti-trichomonal activity.


TOMOCOMD-CARDD software Bond-based linear indices LDA-assisted QSAR model Virtual screening Trichomonacidal In vitro cytostatic and cytocidal activities 



The authors wish to express their gratitude to Prof. Dr. Jorge Gálvez for his attention to this work and valuable suggestions. Yovani Marrero-Ponce (M.-P. Y) acknowledges the Valencia University for kind hospitality during the second semester of 2007. M.-P. Y thanks are given to the international relationships of Valencia University, (Spain) for partial financial support as well as the program ‘Estades Temporals per an Investigadors Convidats’ for a fellowship to work at Valencia University. Some authors’ thanks support from Spanish MEC (Project Reference: SAF2006-04698). Finally, F.T. thanks support from Spanish MEC DGI (Project No. CTQ2004-07768-C02-01/BQU) and Generalitat Valenciana (DGEUI INF01-051 and INFRA03-047, and OCYT GRUPOS03-173). Last but not least, Yovani Marrero-Ponce would like to express thanks for the partial support received from the project entitled Strengthening postgraduate education and research in Pharmaceutical Sciences. This project is funded by the Flemish Interuniversity Council (VLIR) of Belgium.


  1. 1.
    Krieger JN (2000) Sex Transm Dis 27:241CrossRefGoogle Scholar
  2. 2.
    Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clin Microbiol Rev 11:300Google Scholar
  3. 3.
    World-Health-Organization (1995) An overview of selected curable sexually transmitted diseases. World Health Organization, Geneva Switzerland, p 2Google Scholar
  4. 4.
    Cosar C, Julou L (1959) Ann Inst Pasteur 96:238Google Scholar
  5. 5.
    Centers for Disease Control and Prevention (1993) Morb Mortal Wkly Rep 42(RR-14) 70Google Scholar
  6. 6.
    Knight R (1980) J Antimicrob Chemother 6:577CrossRefGoogle Scholar
  7. 7.
    Gillette H, Schmid GP, Moswe D (1985) Metronidazole-resistant Trichomonas vaginalis, a case series, Denver, 1999Google Scholar
  8. 8.
    Lumsden WHR, Robertson DHH, Heyworth R, Harrison C (1988) Genitourin Med 64:217Google Scholar
  9. 9.
    Narcisi EM, Secor WE (1996) Antimicrob Agents Chemother 40:1121Google Scholar
  10. 10.
    Narcisi EM, Secor WE (1996) Antimicrob Agents Chemother 40:1121Google Scholar
  11. 11.
    Houang ET, Ahmet Z, Lawrence AG (1997) Sex Transm Dis 24:116CrossRefGoogle Scholar
  12. 12.
    Pattman RS, Sprott MS, Kerns AM, Earnshaw M (1989) Genitourin Med 65:274Google Scholar
  13. 13.
    Wong CA, Wilson PD, Chew TA (1990) Aust N Z J Obstet Gynaecol 30:169CrossRefGoogle Scholar
  14. 14.
    Livengood CHI, Lossick JG (1991) Obstet Gynecol 78:954Google Scholar
  15. 15.
    Watson PG, Pattman RS (1996) Int J STD AIDS 7:296CrossRefGoogle Scholar
  16. 16.
    Nyirjesy P, Sobel JD, Weitz MV (1998) Clin Infect Dis 26:986CrossRefGoogle Scholar
  17. 17.
    Nyirjesy P, Weitz MV, Gelone SP, Fekete T (1995) Lancet 346:1110CrossRefGoogle Scholar
  18. 18.
    Estrada E, Peña A (2000) Bioorg Med Chem 8:2755CrossRefGoogle Scholar
  19. 19.
    Estrada E, Uriarte E, Montero A, Teijeira M, Santana L, De Clercq E (2000) J Med Chem 43:1975CrossRefGoogle Scholar
  20. 20.
    Marrero-Ponce Y, Romero V, TOMOCOMD software, Central University of Las Villas TOMOCOMD (TOpological MOlecular COMputer Design) for Windows, version 1.0 is a preliminary experimental version; in future a professional version can be obtained upon request to Y. Marrero: or Scholar
  21. 21.
    Marrero-Ponce Y (2003) Molecules 8:687Google Scholar
  22. 22.
    Marrero-Ponce Y (2004) J Chem Inf Comput Sci 44:2010CrossRefGoogle Scholar
  23. 23.
    Marrero-Ponce Y (2004) Bioorg Med Chem 12:6351CrossRefGoogle Scholar
  24. 24.
    Marrero-Ponce Y, Castillo-Garit JA, Torrens F, Romero-Zaldivar V, Castro E (2004) Molecules 9:1100Google Scholar
  25. 25.
    Marrero-Ponce Y, Díaz HG, Romero V, Torrens F, Castro EA (2004) Bioorg Med Chem 12:5331CrossRefGoogle Scholar
  26. 26.
    Marrero-Ponce Y, Cabrera MA, Romero V, Ofori E, Montero LA (2003) Int J Mol Sci 4:512Google Scholar
  27. 27.
    Marrero-Ponce Y, Cabrera MA, Romero V, González DH, Torrens F (2004) J Pharm Pharmaceut Sci 7:186Google Scholar
  28. 28.
    Marrero-Ponce Y, Cabrera MA, Romero-Zaldivar V, Bermejo M, Siverio D, Torrens F (2005) Internet Electrón J Mol Des 4:124Google Scholar
  29. 29.
    Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castanedo N, Ibarra-Velarde F, Huesca-Guillen A, Sanchez AM, Torrens F, Castro EA (2005) Bioorg Med Chem 13:1005CrossRefGoogle Scholar
  30. 30.
    Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, Castanedo N, Ibarra-Velarde F, Huesca-Guillen A, Jorge E, del Valle A, Torrens F, Castro EA (2004) J Comput Aided Mol Des 18:615CrossRefGoogle Scholar
  31. 31.
    Marrero-Ponce Y, Huesca-Guillen A, Ibarra-Velarde F (2005) J Mol Struct (Theochem) 717:67CrossRefGoogle Scholar
  32. 32.
    Marrero-Ponce Y, Montero-Torres A, Zaldivar CR, Veitia MI, Perez MM, Sanchez RN (2005) Bioorg Med Chem 13:1293CrossRefGoogle Scholar
  33. 33.
    Marrero-Ponce Y, Medina-Marrero R, Torrens F, Martinez Y, Romero-Zaldivar V, Castro EA (2005) Bioorg Med Chem 13:2881CrossRefGoogle Scholar
  34. 34.
    Marrero-Ponce Y, Medina-Marrero R, Martinez Y, Torrens F, Romero-Zaldivar V, Castro EA (2006) J Mol Mod 12:255CrossRefGoogle Scholar
  35. 35.
    Marrero-Ponce Y, Nodarse D, González HD, Ramos de Armas R, Romero-Zaldivar V, Torrens F, Castro E (2004) Int J Mol Sci 5:276Google Scholar
  36. 36.
    Marrero-Ponce Y, Castillo-Garit JA, Nodarse D (2005) Bioorg Med Chem 13:3397CrossRefGoogle Scholar
  37. 37.
    Marrero-Ponce Y, Medina R, Castro EA, de Armas R, González H, Romero V, Torrens F (2004) Molecules 9:1124Google Scholar
  38. 38.
    Marrero-Ponce Y, Medina-Marrero R, Castillo-Garit JA, Romero-Zaldivar V, Torrens F, Castro EA (2005) Bioorg Med Chem 13:3003CrossRefGoogle Scholar
  39. 39.
    Marrero-Ponce Y, Torrens F (2006) J Comp-Aided Mol Des 20:685CrossRefGoogle Scholar
  40. 40.
    Casañola-Martin GM, Khan MTH, Marrero-Ponce Y, Ather A, Sultan S, Torrens F, Rotondo R (2007) Bioorg Med Chem 15:1483CrossRefGoogle Scholar
  41. 41.
    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, GermanyGoogle Scholar
  42. 42.
    Estrada E (1996) J Chem Inf Comput Sci 36:844CrossRefGoogle Scholar
  43. 43.
    Estrada E, Molina E (2001) J Mol Graph Model 20:54CrossRefGoogle Scholar
  44. 44.
    Estrada E (1995) J Chem Inf Comput Sci 35:31CrossRefGoogle Scholar
  45. 45.
    Estrada E, Guevara N, Gutman I (1998) J Chem Inf Comput Sci 38:428CrossRefGoogle Scholar
  46. 46.
    Estrada E (1999) J Chem Inf Comput Sci 39:1042CrossRefGoogle Scholar
  47. 47.
    Edwards CH, Penney DE (1988) Elementary linear algebra. Prentice-Hall, Englewood Cliffs, New Jersey, USAGoogle Scholar
  48. 48.
    Marrero Ponce Y (2004) J Chem Inf Comput Sci 44:2010CrossRefGoogle Scholar
  49. 49.
    Estrada E, Vilar S, Uriarte E, Gutierrez Y (2002) J Chem Inf Comput Sci 42:1194CrossRefGoogle Scholar
  50. 50.
    Estrada E, Peña A, Garcia-Domenech R (1998) J Comput Aided Mol Des 12:583CrossRefGoogle Scholar
  51. 51.
    Potapov VM (1978) Stereochemistry. Mir, MoscowGoogle Scholar
  52. 52.
    Wang R, Gao Y, Lai L (2000) Perspect Drug Dis Des 19:47CrossRefGoogle Scholar
  53. 53.
    Ertl P, Rohde B, Selzer P (2000) J Med Chem 43:3714CrossRefGoogle Scholar
  54. 54.
    Ghose AK, Crippen GM (1987) J Chem Inf Comput Sci 27:21Google Scholar
  55. 55.
    Miller KJ (1990) J Am Chem Soc 112:8533CrossRefGoogle Scholar
  56. 56.
    Gasteiger J, Marsili M (1978) Tetrahedron Lett 19:3181CrossRefGoogle Scholar
  57. 57.
    Pauling L (1939) The nature of chemical bond. Cornell University Press, Ithaca (New York)Google Scholar
  58. 58.
    Browder A (1996) Mathematical analysis. An introduction. Springer-Verlag, New YorkGoogle Scholar
  59. 59.
    Axler S (1996) Linear algebra done right. Springer-Verlag, New YorkGoogle Scholar
  60. 60.
    Daudel R, Lefebre R, Moser C (1984) Quantum chemistry: methods and applications. Wiley, New YorkGoogle Scholar
  61. 61.
    Klein DJ (2003) Internet Electron J Mol Des 2:814Google Scholar
  62. 62.
    Todeschini R, Gramatica P (1998) Perspect Drug Dis Des 9–11:355CrossRefGoogle Scholar
  63. 63.
    Consonni V, Todeschini R, Pavan M (2002) J Chem Inf Comput Sci 42:682CrossRefGoogle Scholar
  64. 64.
    Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. Research Studies Press, Letchworth, UKGoogle Scholar
  65. 65.
    Negwer M (1987) Organic-chemical drugs and their synonyms. Akademie-Verlag, BerlinGoogle Scholar
  66. 66.
    Budavari S, O’Neil M, Ann Smith, Heckelman P, Obenchain J (1999) The Merck Index on CD-ROM. Chapman & Hall and Merck & Co., IncGoogle Scholar
  67. 67.
    van de Waterbeemd H (1995) In: van Waterbeemd H (ed) Chemometric methods in molecular design. VCH Publishers, Weinheim, p 265Google Scholar
  68. 68.
    STATISTICA (data analysis software system) vs 6.0.Google Scholar
  69. 69.
    Estrada E, Patlewicz G (2004) Croat Chim Acta 77:203Google Scholar
  70. 70.
    Topliss JG, Edwards RP (1979) J Med Chem 22:1238CrossRefGoogle Scholar
  71. 71.
    Wold S, Erikson L (1995) In: van de Waterbeemd H (ed) VCH Publishers, New York, p 309Google Scholar
  72. 72.
    Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Bioinformatics 16:412CrossRefGoogle Scholar
  73. 73.
    Kouznetsov VV, Rivero CJ, Ochoa PC, Stashenko E, Martínez JR, Montero PD, Nogal RJJ, Fernández PC, Muelas SS, Gómez BA, Bahsas A, Amaro L (2005) J Arch Pharm 1:338Google Scholar
  74. 74.
    Kouznetsov VV, Vargas MLY, Tibaduiza B, Ochoa C, Montero PD, Nogal RJJ, Fernández C, Muelas S, Gómez A, Bahsas A, Amaro-Luis J (2004) J Arch Pharm 337:127CrossRefGoogle Scholar
  75. 75.
    Gálvez J, Garcia-Domenech R, de Julián-Ortiz JV, Soler R (1995) J Chem Inf Comput Sci 35:272CrossRefGoogle Scholar
  76. 76.
    Cercos-del-Pozo RA, Pérez-Giménez F, Salabert-Salvador MT, Garcia-March FJ (2000) J Chem Inf Comput Sci 40:178CrossRefGoogle Scholar
  77. 77.
    Gálvez J, García R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520CrossRefGoogle Scholar
  78. 78.
    Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis. Prentice-Hall, New JerseyGoogle Scholar
  79. 79.
    Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269CrossRefGoogle Scholar
  80. 80.
    Rose K, Hall LH, Kier LB (2002) J Chem Inf Comput Sci 42:651CrossRefGoogle Scholar
  81. 81.
    Mc Farland JW, Gans DJ (1995) In: Waterbeemd H (ed) Chemometric methods in molecular design. VCH Publishers, New York, p 295Google Scholar
  82. 82.
    Estrada E, Uriarte E (2001) Curr Med Chem 8:1573Google Scholar
  83. 83.
    Gavini E, Juliano C, Mulé A, Pirisino G, Murineddu G, Pinna A (2000) Arch Pharm (Weinheim) 333:341CrossRefGoogle Scholar
  84. 84.
    Ochoa A, Pérez E, Pérez R, Suárez M, Ochoa E, Rodríguez H, Gómez A, Muelas S, Nogal RJJ, Martínez RA (1999) Arzneim Forsch 49:764Google Scholar
  85. 85.
    Kouznetsov V, Rodríguez W, Stashenko E, Ochoa C, Vega C, Rolón M, Montero PD, Escario JA, Gómez BA (2004) J Heterocyclic Chem 41:1CrossRefGoogle Scholar
  86. 86.
    Watson C (2003) Biosilico 1:83CrossRefGoogle Scholar
  87. 87.
    Lajiness MS (1990) In: Rouvray DH (ed) Computational chemical graph theory. Nova Science, New York, p 299Google Scholar
  88. 88.
    Walters WP, Stahl MT, Murcko MA (1998) Drug Discov Today 3:160CrossRefGoogle Scholar
  89. 89.
    Castro S, Chicharro R, Arán VJ (2002) J Chem Soc, Perkin Trans 1:790CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Yovani Marrero-Ponce
    • 1
    • 2
    • 3
  • Alfredo Meneses-Marcel
    • 1
    • 4
  • Oscar M. Rivera-Borroto
    • 1
    • 5
  • Ramón García-Domenech
    • 3
  • Jesus Vicente De Julián-Ortiz
    • 3
  • Alina Montero
    • 1
  • José Antonio Escario
    • 4
  • Alicia Gómez Barrio
    • 4
  • David Montero Pereira
    • 4
  • Juan José Nogal
    • 4
  • Ricardo Grau
    • 5
  • Francisco Torrens
    • 2
  • Christian Vogel
    • 6
  • Vicente J. Arán
    • 7
  1. 1. Faculty of Chemistry-Pharmacy, Unit of Computer-Aided Molecular “Biosilico” Discovery and Bioinformatic Research (CAMD-BIR Unit)Central University of Las VillasSanta ClaraCuba
  2. 2.Institut Universitari de Ciència MolecularUniversitat de ValènciaValenciaSpain
  3. 3.Departamento de Química Física, Facultad de Farmacia, Unidad de Investigación de Diseño de Fármacos y Conectividad MolecularUniversitat de ValènciaValenciaSpain
  4. 4.Departamento de Parasitología, Facultad de FarmaciaUCMMadridSpain
  5. 5.Faculty of Mathemathics, Physics & Computer Science, Center of Studies on InformaticsCentral University of Las VillasSanta ClaraCuba
  6. 6.Institut für ChemieUniversität RostockAlbert-Einstein-Straße 3aRostockGermany
  7. 7.Instituto de Química MédicaCSICMadridSpain

Personalised recommendations