Journal of Computer-Aided Molecular Design

, Volume 21, Issue 12, pp 693–708 | Cite as

Calculating physical properties of organic compounds for environmental modeling from molecular structure

  • S. H. Hilal
  • A. N. Saravanaraj
  • T. Whiteside
  • L. A. Carreira


Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values – that is the value of the physical and chemical constants that govern reactivity. Although empirical structure–activity relationships have been developed that allow estimation of some constants, such relationships are generally valid only within limited families of chemicals. The computer program, SPARC, uses computational algorithms based on fundamental chemical structure theory to estimate a large number of chemical reactivity parameters and physical properties for a wide range of organic molecules strictly from molecular structure. Resonance models were developed and calibrated using measured light absorption spectra, whereas electrostatic interaction models were developed using measured ionization pKas in water. Solvation models (i.e., dispersion, induction, H-bonding, etc.) have been developed using various measured physical properties data. At the present time, SPARC’s physical property models can predict vapor pressure and heat of vaporization (as a function of temperature), boiling point (as a function of pressure), diffusion coefficient (as a function of pressure and temperature), activity coefficient, solubility, partition coefficient and chromatographic retention time as a function of solvent and temperature. This prediction capability crosses chemical family boundaries to cover a broad range of organic compounds.


Physical properties Molecular interaction Vapor pressure Activity coefficient Partition coefficients SPARC SAR 


  1. 1.
    Miller MM, Wasik SP, Huang GL, Shiu WT, Mackay D (1985) Environ Sci Technol 19:522CrossRefGoogle Scholar
  2. 2.
    Rekker RF (1977) The hydrophobic fragment constant. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Banerjee S, Yalkowsky SH, Valvani SC (1980) Environ Sci Toxicol 14:1227Google Scholar
  4. 4.
    Doucette WJ, Andren AW (1987) Environ Sci Technol 21:821CrossRefGoogle Scholar
  5. 5.
    Lyman WJ, Reehl E, Rosenblatt D (1990) Handbook of Chemical Property Estimation Methods. ACS (ed), WashingtonGoogle Scholar
  6. 6.
    Leo AJ (1975) In: Veith GD (ed) Structure activity correlations in studies of toxicity and bio-concentrations with aquatic organism. International Joint Commission, Windsor, p 151Google Scholar
  7. 7.
    Wolfe NL, Zepp RG, Gordon JA, Baughman GL, Cline DM (1977) Environ Sci Technol 11:88CrossRefGoogle Scholar
  8. 8.
    Zepp RG, Cline DM (1977) Environ Sci Technol 11:359CrossRefGoogle Scholar
  9. 9.
    Zepp RG (1982) Handbook of environmental chemistry. Springer Verlag, New YorkGoogle Scholar
  10. 10.
    Karickhoff SW, McDaniel VK, Melton C, Vellino AN, Nute DE, Carreira LA (1991) Environ Tox Chem 10:1405CrossRefGoogle Scholar
  11. 11.
    Hilal SH, Karickhoff SW, Carreira LA (1995) Quant Struct Act Relat 14:348CrossRefGoogle Scholar
  12. 12.
    Hilal SH, Karickhoff SW, Carreira LA (2003) QSAR Comb Sci 22:565CrossRefGoogle Scholar
  13. 13.
    Hilal SH, Carreira LA, Karickhoff SW (2004) QSAR Comb Sci 23:709CrossRefGoogle Scholar
  14. 14.
    Hilal SH, Carreira LA, Karickhoff SW, Melton CM (1993) Quant Struct Act Relat 12:389CrossRefGoogle Scholar
  15. 15.
    Whiteside TS, Hilal SH, Carreira LA (2006) QSAR Comb Sci 25:123CrossRefGoogle Scholar
  16. 16.
    Hilal SH, Carreira LA (2007) To be submittedGoogle Scholar
  17. 17.
    Hilal SH, Carreira LA, Karickhoff SW, Melton CM (1994) J Chromatogr 662:269CrossRefGoogle Scholar
  18. 18.
    Whiteside TS, Carreira LA, Hilal SH, Brenner A (2007) To be submittedGoogle Scholar
  19. 19.
    Dykyj J, Repas M, Svoboda AJ (1984) Vapor pressure of organic substances. VEDA, Vydavatel’ stvo, Slovenskej Akademie Vied, BratislavaGoogle Scholar
  20. 20.
    Flory PJ (1941) J Chem Phys 9:660CrossRefGoogle Scholar
  21. 21.
    Huggins ML (1941) J Chem Phys 9:440CrossRefGoogle Scholar
  22. 22.
    Tarjan G, Timar I, Takacs JM, Meszaros SY, Nyiredy S, Budahegyl MV, Lombosi ER, Lombosi TS (1982) J Chromatogr 271:213Google Scholar
  23. 23.
    Haken JK, Evans MB (1989) J Chromatogr 93:472Google Scholar
  24. 24.
    Budavari S, O’Neil M, Smith A, Heckelman PE, Kinneary JF (1996) The Merck index. Merck & CO., Inc., Whitehouse StationGoogle Scholar
  25. 25.
    Heller SR, Bigwood DW, Laster P, Scott K, Ars pesticide properties database. USDAGoogle Scholar
  26. 26.
    Hartley D, Kidd H (1983) The agro chemical handbook. Royal Society of Chemistry, NottinghamGoogle Scholar
  27. 27.
    Yalkowsky SH, He Y (2006) AQUASOL dATAbASE of aqueous solubility. The University of ArizonaGoogle Scholar
  28. 28.
    Meylan WM, Howard PH (2004) SRC’s EPI suite: PHYSPROP database. Syracuse Research CorporationGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. H. Hilal
    • 1
  • A. N. Saravanaraj
    • 2
  • T. Whiteside
    • 2
  • L. A. Carreira
    • 2
  1. 1.Ecosystems Research Division, National Exposure Research LaboratoryUS Environmental Protection AgencyAthensUSA
  2. 2.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations