Journal of Computer-Aided Molecular Design

, Volume 21, Issue 7, pp 395–418 | Cite as

Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4

  • Erik Evensen
  • Diane Joseph-McCarthy
  • Gregory A. Weiss
  • Stuart L. Schreiber
  • Martin Karplus


Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these “random” methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.


Combinatorial library MCSS Fragment docking Structure-based drug design Active site map 


  1. 1.
    Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) J Med Chem 37(9):1233–1251Google Scholar
  2. 2.
    Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) J Med Chem 37(10):1385–1401Google Scholar
  3. 3.
    Czarnick AW (1996) Acc Chem Res 29(3):112–113Google Scholar
  4. 4.
    Beroza PP, Feinstein R, Greene J, Goldman B, Mount J, Smellie A (1999) The design of maximum information libraries as a highly efficient tool for lead generation. Theory and methods. presentation at acs national meeting, anaheim, ca., CombiChem, Inc., Palo Alto, CAGoogle Scholar
  5. 5.
    Bradley EK, Beroza P, Eksterowicz J, Genin H, Grootenhuis P, Miller D, Miller J, Penzotti J, Shirley W, Spellmeyer D, Srinivasan J, Stanton R (1999) The design of maximum information libraries as a highly efficient tool for lead generation. Application of the method. presentation at acs national meeting, anaheim, ca., CombiChem, Inc., Palo Alto, CAGoogle Scholar
  6. 6.
    Kick EK, Roe DC, Skillman AG, Liu G, Ewing TJA, Sun Y, Kuntz ID, Ellman JA (1997) Chem Biol 4:297–307Google Scholar
  7. 7.
    Kubinyi H (1998) Curr Op Drug Disco Devl 1(1):16–27Google Scholar
  8. 8.
    Murray CM, Cato SJ (1999) J Chem Inf Comput Sci 39(1):46–50Google Scholar
  9. 9.
    Tondi D, Slomczynska U, Costi MP, Watterson DM, Ghelli S, Shoichet BK (1999) Chem Biol 6(5):319–331Google Scholar
  10. 10.
    Martin EJ, Critchlow RE (1999) J Comb Chem 1(1):32–45Google Scholar
  11. 11.
    Koehler RT, Dixon SL, Villar HO (1999) J Med Chem 42(22):4695–4704Google Scholar
  12. 12.
    Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudiniere RF (1999) JMC 42(18):3557–3571Google Scholar
  13. 13.
    Miranker A, Karplus M (1991) Proteins 11(1):29–34Google Scholar
  14. 14.
    Evensen E, Joseph-McCarthy D, Karplus M (1997) MCSS version 2.1. Harvard University, Cambridge, MA, USAGoogle Scholar
  15. 15.
    Caflisch A, Miranker A, Karplus M (1993) J Med Chem 36(15):2142–2167Google Scholar
  16. 16.
    Caflisch A (1996) J Comput-Aided Mol Des 10(5):372–396Google Scholar
  17. 17.
    Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) Proteins 19:199–221Google Scholar
  18. 18.
    Miranker A, Karplus M (1995) Proteins: Structure, Function, and Genetics 23:472–490Google Scholar
  19. 19.
    Bohacek RS, McMartin C (1994) J Am Chem Soc 116:5560–5571Google Scholar
  20. 20.
    Ripka AS, Satyshur KA, Bohacek RS, Rich DH (2001) Org Lett 3:2309–2313Google Scholar
  21. 21.
    Grzybowski BA, Ishchenko AV, Kim C-Y, Topalov G, Chapman R, Christianson DW, Whitesides GM, Shakhnovich EI (2002) Proc Nat Acad Sci 99:1270–1273Google Scholar
  22. 22.
    Firth-Clark S, Willems HMG, Williams A, Harris W (2006) J Chem Inf Model 46:642–647Google Scholar
  23. 23.
    Joseph-McCarthy D, Tsang SK, Filman DJ, Hogle JM, Karplus M (2001) J Am Chem Soc 123:12758–12769Google Scholar
  24. 24.
    Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudiniere RF (1999) J Med Chem 42:3251–3264Google Scholar
  25. 25.
    Mason JS, Cheney DL (2000) Pac Symp Biocomput 5:573–584Google Scholar
  26. 26.
    Eksterowicz JE, Evensen E, Lemmen C, Brady GP, Lanctot JK, Bradley EK, Saiah E, Robinson LA, Grootenhuis PDJ, Blaney JM (2002) J Mol Graph Model 20:469–477Google Scholar
  27. 27.
    Evensen E, Eksterowicz JE, Stanton RV, Oshiro C, Grootenhuis PDJ, Bradley EK (2003) J Med Chem 46:5125–5128Google Scholar
  28. 28.
    Deng Z, Chuaqui C, Singh J (2006) J Med Chem 49:490–500Google Scholar
  29. 29.
    Joseph-McCarthy D, Alvarez JC (2003) Proteins 51:189–202Google Scholar
  30. 30.
    Hajduk PJ, Meadows RP, Fesik SW (1999) Q Rev Biophys 32:211–240Google Scholar
  31. 31.
    Petros AM, Dignes J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) J Med Chem 49:656–663Google Scholar
  32. 32.
    Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) Nat Biotechnol 23:201–207Google Scholar
  33. 33.
    Gill A, Cleasby A, Jhoti H (2005) Chembiochem 6:506–512Google Scholar
  34. 34.
    Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) J Med Chem 48:403–413Google Scholar
  35. 35.
    Erlanson DA, McDowell RS, O’Brien T (2004) J Med Chem 47:3463–3482Google Scholar
  36. 36.
    Erlanson DA (2006) Curr Opin Biotechnol 17:643–652Google Scholar
  37. 37.
    Hammer J, Gallazi F, Bono E, Karr RW, Guenot J, Valasnini P, Nagy ZA, Sinigaglia F (1995) J Exp Med 181:1847–1855Google Scholar
  38. 38.
    Wucherpfennig KW, Strominger JL (1995) J Exp Med 181:1597–1601Google Scholar
  39. 39.
    Czaja AJ (2005) Ann Hepatol 4:6–24Google Scholar
  40. 40.
    Janeway CA Jr, Travers P (1996) Immunobiology: The Immune System in Health and Disease. Garland Publishing Inc., New York, NYGoogle Scholar
  41. 41.
    Powis SH, Geraghty DE (1995) Immunol Today 16:466–468Google Scholar
  42. 42.
    Campbell RD, Trowsdale J (1993) Immunol Today 14:349–352Google Scholar
  43. 43.
    Nepom GT, Erlich H (1991) Annu Rev Immunol 9:493–525Google Scholar
  44. 44.
    Theofilopoulos AN (1995) Immunol Today 16:90–98Google Scholar
  45. 45.
    Theofilopoulos AN (1995) Immunol Today 16:150–158Google Scholar
  46. 46.
    Mueller DL, Jenkins MK (1997) Curr Biol 7:R255–R257Google Scholar
  47. 47.
    Wong FS, Wen L (2003) Curr Mol Med 3:1–15Google Scholar
  48. 48.
    Larsen CE, Alper CA (2004) Curr Opin Immunol 16:660–667Google Scholar
  49. 49.
    Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA (2005) EMBO J 24:2968–2979Google Scholar
  50. 50.
    George AJT, Ritter MA, Lechler RI (1995) Immunol Today 16:209–211Google Scholar
  51. 51.
    Wilkinson AJ (1996) Chem Biol 3:519–524Google Scholar
  52. 52.
    Abbas AK, Lichtman AH, Pober JS (1997) Cellular and Molecular Immunology, 3rd ed. Saunders, Philadelphia, PA, USAGoogle Scholar
  53. 53.
    Stern LJ, Wiley DC (1994) Structure 2(4):245–251Google Scholar
  54. 54.
    Madden DR, Gorga JC, Strominger JL, Wiley DC (1991) Nature 353:321–325Google Scholar
  55. 55.
    Madden DR, Garboczi DN, Wiley DC (1993) Cell 75:693–708Google Scholar
  56. 56.
    Garrett TPJ, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC (1989) Nature 342:692–696Google Scholar
  57. 57.
    Gou H-C, Madden DR, Silver ML, Jardetzky TS, Gorga JC, Strominger JL, Wiley DC (1993) Proc Natl Acad Sci USA 90:8053–8057Google Scholar
  58. 58.
    Sette A, Sidney J, Oseroff C, del Guercio M-F, Southwood S, Arrhenius T, Powell MF, Colón SM, Gaeta FCA, Grey HM (1993) J Immunol 151(6):3163–3170Google Scholar
  59. 59.
    Rognan D, Krebs S, Kuonen O, Lamas JR, López de Castro JA, Folkers G (1997) JCAMD 11:463–478Google Scholar
  60. 60.
    Ghosh P, Amaya M, Mellins E, Wiley DC (1995) Nature 378:457–462Google Scholar
  61. 61.
    Humphrey WF, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38Google Scholar
  62. 62.
  63. 63.
    Almagro JC, Vargas-Madrazo E, Lara-Ochoa F, Horjales E (1995) Prot Sci 4:1708–1717CrossRefGoogle Scholar
  64. 64.
    Sant’Angelo DB, Waterbury G, Preston-Hurlburt P, Yoon ST, Medzhitov R, Hong S-C, Janeway CA Jr (1996) Immunity 4:367–376Google Scholar
  65. 65.
    Garbozci DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Nature 384:134–141Google Scholar
  66. 66.
    Vasmatzis G, Cornette J, Sezerman U, DeLisi C (1996) J Mol Biol 261:72–89Google Scholar
  67. 67.
    Bouvier M, Wiley DC (1994) Science 265:398–402Google Scholar
  68. 68.
    Cresswell P (1996) Cell 84:505–507Google Scholar
  69. 69.
    Jensen PE, Weber DA, Thayer WP, Westerman LE, Dao CT (1999) Immunol Rev 172:229–238Google Scholar
  70. 70.
    Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TM, Mellins ED (2005) Immunol Rev 207:242–260Google Scholar
  71. 71.
    Malcherek G, Falk K, Rötzschke O, Rammensee H-G, Stevanovic S, Gnau V, Jung G, Melms A (1993) Int Immunol 5(10):1229–1237Google Scholar
  72. 72.
    Falcioni F, Ito K, Vidovic D, Belunis C, Campbell R, Berthel SJ, Bolin DR, Gillespie PB, Huby N, Olson GL, Sarabu R, Guenot J, Madison V, Hammer J, Sinigaglia F, Steinmetz M, Nagy ZA (1999) Nature Biotech 17:562–561Google Scholar
  73. 73.
    Eldor R, Cohen IR, Raz I (2005) Int Rev Immunol 24:327–339Google Scholar
  74. 74.
    Haque A, Blum JS (2005) J Biol Regul Homeost Agents 19:93–104Google Scholar
  75. 75.
    Dzhambazov B, Nandakumar KS, Kihlberg J, Fugger L, Holmdahl R, Vestberg M (2006) J Immunol 176:1525–1533Google Scholar
  76. 76.
    Smith AB III, Benowitz AB, Guzman MC, Sprengeler PA, Hirschmann R, Schweiger EJ, Bolin DR, Nagy Z, Campbell RM, Cox DC, Olson GL (1998) J Am Chem Soc 120:12704–12705Google Scholar
  77. 77.
    Smith AB III, Benowitz AB, Sprengeler PA, Barbosa J, Guzman MA, Hirschmann R, Schweiger EJ, Bolin DR, Nagy Z, Campbell RM, Cox DC, Olson GL (1999) J Am Chem Soc 121:9286–9298Google Scholar
  78. 78.
    Woulfe SL, Bono CP, Zacheis ML, Welply JK, Kirschmann DA, Baudino TA, Wang Y, Stone DA, Hanson GJ, Vuletich JL, Bedell LJ, Schwartz BD, Howard SC (1997) J Pharm Expt Therapeutics 281:663– 669Google Scholar
  79. 79.
    Bolin DR, Swain AL, Sarabu R, Berthel SJ, Gillespie P, Huby NJS, Makofske R, Orzechowski L, Perrotta A, Toth K, Cooper JP, Jiang N, Falcioni F, Campbell R, Cox D, Gaizband D, Belunis CJ, Vidovic D, Ito K, Crowther R, Kammlott U, Zhang X, Palermo R, Weber D, Guenot J, Nagy Z, Olson GL (2000) J Med Chem 43:2135–2148Google Scholar
  80. 80.
    Dedier S, Krebs S, Lamas JR, Poenaru S, Folkers G, Lopez de Casto JA, Seebach D, Rognan D (1999) J Recept Signal Transduction Res 19:645–657Google Scholar
  81. 81.
    Madurga S, Belda I, Llorà X, Giralt E (2005) Protein Sci 14:2069–2079Google Scholar
  82. 82.
    Dessen A, Lawrence MC, Cupo S, Zaller DM, Wiley DC (1997) Immunity 7:473–481Google Scholar
  83. 83.
    Brünger AT, Karplus M (1988) Proteins 4:148–156Google Scholar
  84. 84.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187–217Google Scholar
  85. 85.
    MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) In: Schleyer PvR et al (eds) The encyclopedia of computational chemistry, vol 1. John Wiley & Sons, Chichester, pp 271–277Google Scholar
  86. 86.
    Libes D (1995) Exploring Expect: A Tcl-Based Toolkit for Automating Interactive Programs. O’Reilly & Associates Inc., Sebastopol, CA, USAGoogle Scholar
  87. 87.
    Ousterhout JK (1994) Tcl and the Tk toolkit. Addison-Wesley Publishing Company, Reading, MA, USAGoogle Scholar
  88. 88.
    Elber R, Karplus M (1990) J Am Chem Soc 112:9161–9175Google Scholar
  89. 89.
    Tidor B, Karplus M (1991) Biochemistry 30:3217–3228Google Scholar
  90. 90.
    Stultz CM, Karplus M (1999) Proteins 37(4):512–529Google Scholar
  91. 91.
    Karpen ME, Tobias DJ, Brooks CL III (1993) Biochemistry 32:412–420Google Scholar
  92. 92.
    Caflisch A, Karplus M (1995) Persp Drug Discov Des 3:51–84Google Scholar
  93. 93.
    Viswanadhan VN, Ghose AK, Chandra Singh U, Wendoloski JJ (1999) J Chem Inf Comput Sci 39:405–412Google Scholar
  94. 94.
    Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988Google Scholar
  95. 95.
    Cabani S, Gianni P, Mollica V, Lepori L (1981) J Sol Chem 10(8):563–595Google Scholar
  96. 96.
    Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473Google Scholar
  97. 97.
    Jorgensen WL, Gao J (1986) J Phys Chem 90:2174–2182Google Scholar
  98. 98.
    Kubo MM, Gallicchio E, Levy RM (1997) J Phys Chem B 101:10527–10534Google Scholar
  99. 99.
    Della Gatta G, Barone G, Elia G (1986) J Sol Chem 15(2):157–167Google Scholar
  100. 100.
    Dec SF, Gill SJ (1984) J Sol Chem 13(1):27–41Google Scholar
  101. 101.
    Mestres J, Rohrer DC, Maggiora GM (1997) J Mol Graphics Mod 15:114–121Google Scholar
  102. 102.
    Chapman D (1996) J Comp Aided Mol Des 10:501–512Google Scholar
  103. 103.
    Cunningham BR, Rivetna M, Tolman RL, Flattery SJ, Nichols A, Elizabeth, Schwartz CD, Wicker LS, Hermes JD, Jones AB (1997) Bioorg Med Chem Lett 7(1):19–24Google Scholar
  104. 104.
    Halgren TA (1996) J Comp Chem17(5–6):490–519Google Scholar
  105. 105.
    Furka Á, Sebestyén F, Asgedom M, Dibó G (1991) Int J Peptide Protein Res 37:487–493CrossRefGoogle Scholar
  106. 106.
    Combs AP, Kapoor TM, Feng S, Chen JK, Daudé-Snow L, Schreiber SL (1996) J Am Chem Soc 118:287–288Google Scholar
  107. 107.
    Morken JP, Kapoor TM, Feng S, Shirai F, Schreiber SL (1998) J Am Chem Soc 120:30–36Google Scholar
  108. 108.
    Kozono H, White J, Clements J, Marrack P, Kappler J (1994) Nature 369:151–154Google Scholar
  109. 109.
    Wallace AC, Laskowski RA, Thornton JM (1995) Prot Eng 8:127–134Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Erik Evensen
    • 1
    • 2
    • 3
  • Diane Joseph-McCarthy
    • 2
    • 4
  • Gregory A. Weiss
    • 2
    • 5
  • Stuart L. Schreiber
    • 1
    • 2
    • 6
  • Martin Karplus
    • 1
    • 2
    • 7
  1. 1.Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUSA
  2. 2.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  3. 3.Sunesis PharmaceuticalsSouth San FranciscoUSA
  4. 4.Chemical and Screening Sciences DepartmentWyeth ResearchCambridgeUSA
  5. 5.University of CaliforniaIrvineUSA
  6. 6.Howard Hughes Medical InstituteCambridgeUSA
  7. 7.Laboratoire de Chimie BiophysiqueISIS, Université Louis PasteurStrasbourgFrance

Personalised recommendations