Skip to main content

Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using QSAR modeling, classification techniques and virtual screening

Abstract

This paper presents the results of an optimization study on biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists, which was accomplished by using quantitative-structure activity relationships (QSARs), classification and virtual screening techniques. First, a linear QSAR model was developed using Multiple Linear Regression (MLR) Analysis, while the Elimination Selection-Stepwise Regression (ES-SWR) method was adopted for selecting the most suitable input variables. The predictive activity of the model was evaluated using an external validation set and the Y-randomization technique. Based on the selected descriptors, the Support Vector Machines (SVM) classification technique was utilized to classify data into two categories: “actives” or “non-actives”. Several attempts were made to optimize the scaffold of most potent compounds by inducing various structural modifications. Potential derivatives with improved activities were identified, as they were classified “actives” by the SVM classifier. Their activities were estimated using the produced MLR model. A detailed analysis on the model applicability domain defined the compounds, whose estimations can be accepted with confidence.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Kowalski TJ, Spar BD, Weig B, Farley C, Cook J, Ghibaudi L, Fried S, O’Neill K, Del Vecchio RA, McBriar M, Guzik H, Clader J, Hawes BE, Hwa J (2006) Eur J Pharmacol 535:182

    Article  CAS  Google Scholar 

  2. McBriar M, Guzik H, Shapiro S, Paruchova J, Xu R, Palani A, Clader JW, Cox K, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neill K, Spar BD, Weig B, Weston DJ, Farley C, Cook J (2006) J Med Chem 49:2294

    Article  CAS  Google Scholar 

  3. (a) Palani A, Shapiro S, McBriar MD, Clader JW, Greenlee WJ, Spar B, Kowalski TJ, Farley C, Cook J, van Heek M, Weig B, O’Neill K, Graziano M, Hawes B (2005) J Med Chem 48:4746. (b) McBriar MD, Guzik H, Xu R, Paruchova J, Li S, Palani A, Clader JW, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neill K, Spar B, Weig B (2005) J Med Chem 48:2274

    Google Scholar 

  4. Receveur JM, Bjurling E, Ulven T, Little PB, Norregaard PK, Hogberg T (2004) Bioorg Med Chem Lett 14:5075

    Article  CAS  Google Scholar 

  5. Rowbottom MW, Vickers TD, Dyck B, Taminiya J, Zhang M, Zhao L, Grey J, Provencal D, Schwarz D, Heise CE, Mistry M, Fisher A, Dong T, Hu T, Saunders J, Goodfellow VS (2005) Bioorg Med Chem Lett 15:3439

    Article  CAS  Google Scholar 

  6. Vasudevan A, Wodka D, Verzal MK, Souers AJ, Gao J, Brodjian S, Fry D, Dayton B, Marsh KC, Hernandez LE, Ogiela CA, Collins CA, Kym PR (2004) Bioorg Med Chem Lett 14:4879

    Article  CAS  Google Scholar 

  7. (a) Xu R, Li S, Paruchova J, McBriar MD, Guzik H, Palani A, Clader JW, Cox K, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neill K, Spar BD, Weig B, Weston DJ (2006) Bioorg Med Chem 14:3285. (b) Su J, McKittrick BA, Tang H, Czarniecki M, Greenlee WJ, Hawes BE, O’Neill K (2005) Bioorg Med Chem 13:1829

    Google Scholar 

  8. (a) Kanuma K, Omodera K, Nishiguchi M, Funakoshi T, Chaki S, Semple G, Tran T-A, Kramer B, Hsu D, Casper M, Thomsen B, Beeley N, Sekiguchi Y (2005) Bioorg Med Chem Lett 15:2565. (b) Kanuma K, Omodera K, Nishiguchi M, Funakoshi T, Chaki S, Semple G, Tran T-A, Kramer B, Hsu D, Casper M, Thomsen B, Sekiguchi Y (2005) Bioorg Med Chem Lett 15:3853. (c) Kanuma K, Omodera K, Nishiguchi M, Funakoshi T, Chaki S, Nagase Y, Iida I, Yamaguchi J-I, Semple G, Tran T-A, Sekiguchi Y (2006) Bioorg Med Chem 14:3307

    Google Scholar 

  9. Vasudevan A, Wodka D, Verzal MK, Souers AJ, Gao J, Brodjian S, Fry D, Dayton B, Marsh KC, Hernandez LE, Ogiela CA, Collins CA, Kym PR (2004) Bioorg Med Chem Lett 14:4879

    Article  CAS  Google Scholar 

  10. Guo T, Hunter RC, Gu H, Shao Y, Rokosz LL, Stauffer TM, Hobbs DW (2005) Bioorg Med Chem Lett 15:3691

    Article  CAS  Google Scholar 

  11. Guo T, Shao Y, Qian G, Rokosz LL, Stauffer TM, Hunter RC, Babu SD, Gu H, Hobbs DW (2005) Bioorg Med Chem Lett 15:3696

    Article  CAS  Google Scholar 

  12. CambridgeSoft Corporation http://www.cambridgesoft.com

  13. http://www.lohninger.com/topix.html

  14. Kennard RW, Stone LA (1969) Technometrics 11:137

    Article  Google Scholar 

  15. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

  16. Wu W, Walczak B, Massart DL, Heuerding S, Erni F, Last IR, Prebble KA (1996) Chemometr Intell Lab Syst 33:35

    Article  CAS  Google Scholar 

  17. Todeschini R, Consonni V, Mannhold R, Kubinyi H, Timmerman H (Series Editor) (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

  18. (a) Efron B (1983) J Am Stat Assoc 78:316. (b) Osten DW (1998) J Chemom 2:39

  19. Shen M, Beguin C, Golbraikh A, Stables J, Kohn H, Tropsha A (2004) J Med Chem 47:2356

    Article  CAS  Google Scholar 

  20. Golbraikh A, Tropsha A (2002) J Mol Graph Mod 20:269

    Article  CAS  Google Scholar 

  21. Wold S, Eriksson L (1995) In: Van de Waterbeemd H (ed) Chemometrics methods in molecular design, VCH Weinheim, Germany

  22. Atkinson A (1985) Plots, transformations and regression. Clarendon Press, Oxford (UK)

    Google Scholar 

  23. Cortes C, Vapnik V (1995) Mach Learning 20:273

    Google Scholar 

  24. Jorissen RN, Gilson MK (2005) J Chem Inf Model 45:549

    Article  CAS  Google Scholar 

  25. Wilton D, Willet P, Lawson K, Mullier G (2003) J Chem Inf Comput Sci 43:469

    Article  CAS  Google Scholar 

  26. Chang CC, Lin CJ LIBSVM: http://www.csie.ntu.edu.tw/∼cjlin/libsvm

  27. Burges CJC (1998) Data Min Knowl Discov 2:127

    Article  Google Scholar 

  28. Walters WPA, Murcko MA (1999) Curr Opin Chem Biol 3:384

    Article  CAS  Google Scholar 

  29. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, NY

    Google Scholar 

  30. Kier LB, Hall LB (1986) Molecular connectivity in structure activity analysis. Wiley, Chichester

    Google Scholar 

  31. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) J Comput Aid Design 20:83

    Article  CAS  Google Scholar 

  32. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) Mol Div. 10:405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.M. thanks the Greek State Scholarship Foundation for a doctoral assistantship. A.A. wishes to thank Cyprus Research Promotion Foundation (Grant No. PENEK/ENISX/0603/05) and the Committee of Research of the National Technical University of Athens, Greece for a doctoral assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Sarimveis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melagraki, G., Afantitis, A., Sarimveis, H. et al. Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using QSAR modeling, classification techniques and virtual screening. J Comput Aided Mol Des 21, 251–267 (2007). https://doi.org/10.1007/s10822-007-9112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9112-4

Keywords

  • MCH1R
  • QSAR
  • Classification
  • SVM
  • Virtual screening