Advertisement

Journal of Computer-Aided Molecular Design

, Volume 21, Issue 5, pp 251–267 | Cite as

Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using QSAR modeling, classification techniques and virtual screening

  • Georgia Melagraki
  • Antreas Afantitis
  • Haralambos Sarimveis
  • Panayiotis A. Koutentis
  • John Markopoulos
  • Olga Igglessi-Markopoulou
Original Paper

Abstract

This paper presents the results of an optimization study on biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists, which was accomplished by using quantitative-structure activity relationships (QSARs), classification and virtual screening techniques. First, a linear QSAR model was developed using Multiple Linear Regression (MLR) Analysis, while the Elimination Selection-Stepwise Regression (ES-SWR) method was adopted for selecting the most suitable input variables. The predictive activity of the model was evaluated using an external validation set and the Y-randomization technique. Based on the selected descriptors, the Support Vector Machines (SVM) classification technique was utilized to classify data into two categories: “actives” or “non-actives”. Several attempts were made to optimize the scaffold of most potent compounds by inducing various structural modifications. Potential derivatives with improved activities were identified, as they were classified “actives” by the SVM classifier. Their activities were estimated using the produced MLR model. A detailed analysis on the model applicability domain defined the compounds, whose estimations can be accepted with confidence.

Keywords

MCH1R QSAR Classification SVM Virtual screening 

Notes

Acknowledgments

G.M. thanks the Greek State Scholarship Foundation for a doctoral assistantship. A.A. wishes to thank Cyprus Research Promotion Foundation (Grant No. PENEK/ENISX/0603/05) and the Committee of Research of the National Technical University of Athens, Greece for a doctoral assistantship.

References

  1. 1.
    Kowalski TJ, Spar BD, Weig B, Farley C, Cook J, Ghibaudi L, Fried S, O’Neill K, Del Vecchio RA, McBriar M, Guzik H, Clader J, Hawes BE, Hwa J (2006) Eur J Pharmacol 535:182CrossRefGoogle Scholar
  2. 2.
    McBriar M, Guzik H, Shapiro S, Paruchova J, Xu R, Palani A, Clader JW, Cox K, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neill K, Spar BD, Weig B, Weston DJ, Farley C, Cook J (2006) J Med Chem 49:2294CrossRefGoogle Scholar
  3. 3.
    (a) Palani A, Shapiro S, McBriar MD, Clader JW, Greenlee WJ, Spar B, Kowalski TJ, Farley C, Cook J, van Heek M, Weig B, O’Neill K, Graziano M, Hawes B (2005) J Med Chem 48:4746. (b) McBriar MD, Guzik H, Xu R, Paruchova J, Li S, Palani A, Clader JW, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neill K, Spar B, Weig B (2005) J Med Chem 48:2274Google Scholar
  4. 4.
    Receveur JM, Bjurling E, Ulven T, Little PB, Norregaard PK, Hogberg T (2004) Bioorg Med Chem Lett 14:5075CrossRefGoogle Scholar
  5. 5.
    Rowbottom MW, Vickers TD, Dyck B, Taminiya J, Zhang M, Zhao L, Grey J, Provencal D, Schwarz D, Heise CE, Mistry M, Fisher A, Dong T, Hu T, Saunders J, Goodfellow VS (2005) Bioorg Med Chem Lett 15:3439CrossRefGoogle Scholar
  6. 6.
    Vasudevan A, Wodka D, Verzal MK, Souers AJ, Gao J, Brodjian S, Fry D, Dayton B, Marsh KC, Hernandez LE, Ogiela CA, Collins CA, Kym PR (2004) Bioorg Med Chem Lett 14:4879CrossRefGoogle Scholar
  7. 7.
    (a) Xu R, Li S, Paruchova J, McBriar MD, Guzik H, Palani A, Clader JW, Cox K, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neill K, Spar BD, Weig B, Weston DJ (2006) Bioorg Med Chem 14:3285. (b) Su J, McKittrick BA, Tang H, Czarniecki M, Greenlee WJ, Hawes BE, O’Neill K (2005) Bioorg Med Chem 13:1829Google Scholar
  8. 8.
    (a) Kanuma K, Omodera K, Nishiguchi M, Funakoshi T, Chaki S, Semple G, Tran T-A, Kramer B, Hsu D, Casper M, Thomsen B, Beeley N, Sekiguchi Y (2005) Bioorg Med Chem Lett 15:2565. (b) Kanuma K, Omodera K, Nishiguchi M, Funakoshi T, Chaki S, Semple G, Tran T-A, Kramer B, Hsu D, Casper M, Thomsen B, Sekiguchi Y (2005) Bioorg Med Chem Lett 15:3853. (c) Kanuma K, Omodera K, Nishiguchi M, Funakoshi T, Chaki S, Nagase Y, Iida I, Yamaguchi J-I, Semple G, Tran T-A, Sekiguchi Y (2006) Bioorg Med Chem 14:3307Google Scholar
  9. 9.
    Vasudevan A, Wodka D, Verzal MK, Souers AJ, Gao J, Brodjian S, Fry D, Dayton B, Marsh KC, Hernandez LE, Ogiela CA, Collins CA, Kym PR (2004) Bioorg Med Chem Lett 14:4879CrossRefGoogle Scholar
  10. 10.
    Guo T, Hunter RC, Gu H, Shao Y, Rokosz LL, Stauffer TM, Hobbs DW (2005) Bioorg Med Chem Lett 15:3691CrossRefGoogle Scholar
  11. 11.
    Guo T, Shao Y, Qian G, Rokosz LL, Stauffer TM, Hunter RC, Babu SD, Gu H, Hobbs DW (2005) Bioorg Med Chem Lett 15:3696CrossRefGoogle Scholar
  12. 12.
    CambridgeSoft Corporation http://www.cambridgesoft.com
  13. 13.
    http://www.lohninger.com/topix.htmlGoogle Scholar
  14. 14.
    Kennard RW, Stone LA (1969) Technometrics 11:137CrossRefGoogle Scholar
  15. 15.
    Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69CrossRefGoogle Scholar
  16. 16.
    Wu W, Walczak B, Massart DL, Heuerding S, Erni F, Last IR, Prebble KA (1996) Chemometr Intell Lab Syst 33:35CrossRefGoogle Scholar
  17. 17.
    Todeschini R, Consonni V, Mannhold R, Kubinyi H, Timmerman H (Series Editor) (2000) Handbook of molecular descriptors. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    (a) Efron B (1983) J Am Stat Assoc 78:316. (b) Osten DW (1998) J Chemom 2:39Google Scholar
  19. 19.
    Shen M, Beguin C, Golbraikh A, Stables J, Kohn H, Tropsha A (2004) J Med Chem 47:2356CrossRefGoogle Scholar
  20. 20.
    Golbraikh A, Tropsha A (2002) J Mol Graph Mod 20:269CrossRefGoogle Scholar
  21. 21.
    Wold S, Eriksson L (1995) In: Van de Waterbeemd H (ed) Chemometrics methods in molecular design, VCH Weinheim, GermanyGoogle Scholar
  22. 22.
    Atkinson A (1985) Plots, transformations and regression. Clarendon Press, Oxford (UK)Google Scholar
  23. 23.
    Cortes C, Vapnik V (1995) Mach Learning 20:273Google Scholar
  24. 24.
    Jorissen RN, Gilson MK (2005) J Chem Inf Model 45:549CrossRefGoogle Scholar
  25. 25.
    Wilton D, Willet P, Lawson K, Mullier G (2003) J Chem Inf Comput Sci 43:469CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Burges CJC (1998) Data Min Knowl Discov 2:127CrossRefGoogle Scholar
  28. 28.
    Walters WPA, Murcko MA (1999) Curr Opin Chem Biol 3:384CrossRefGoogle Scholar
  29. 29.
    Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, NYGoogle Scholar
  30. 30.
    Kier LB, Hall LB (1986) Molecular connectivity in structure activity analysis. Wiley, ChichesterGoogle Scholar
  31. 31.
    Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) J Comput Aid Design 20:83CrossRefGoogle Scholar
  32. 32.
    Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) Mol Div. 10:405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Georgia Melagraki
    • 1
  • Antreas Afantitis
    • 1
    • 2
  • Haralambos Sarimveis
    • 1
  • Panayiotis A. Koutentis
    • 3
  • John Markopoulos
    • 4
  • Olga Igglessi-Markopoulou
    • 1
  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of ChemoInformaticsNovaMechanics LtdLarnacaCyprus
  3. 3.Department of ChemistryUniversity of CyprusNicosiaCyprus
  4. 4.Department of ChemistryUniversity of AthensAthensGreece

Personalised recommendations