Skip to main content
Log in

Ultrafast de novo docking combining pharmacophores and combinatorics

  • Original paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We report on a successful de novo design approach which relies on the combination of multi-million compound combinatorial docking under receptor-based pharmacophore constraints. Inspired by a rationale by A.R. Leach et al., we document on the unification of two steps into one for ligand assembly. In the original work, fragments known to bind in protein active sites were connected forming novel ligand compounds by means of generic skeleton linkers and following a combinatorial approach. In our approach, the knowledge of fragments binding to the protein has been expressed in terms of a receptor-based pharmacophore definition. The combinatorial linking step is performed in situ during docking, starting from combinatorial libraries. Three sample scenarios growing in size and complexity (combinatorial libraries of 1 million, 1.3 million, and 22.4 million compounds) have been created to illustrate the method. Docking could be accomplished between minutes and several hours depending on the outset; the results were throughout promising. Technically, a module compatibility between FlexXC and FlexX-Pharm has been established. The background is explained, and the crucial points from an information scientist’s perspective are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Another, slightly different approach is pursued by Degen and Rarey [23] in their program FlexNovo; the authors employ fragment spaces generated in a chemically sensible way as input to a FlexX-based docking machinery.

References

  1. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discov 3:935

    Article  CAS  Google Scholar 

  2. Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Curr Opin Chem Biol 6(4):439

    Article  CAS  Google Scholar 

  3. Tame JR (1999) J Comput-Aided Mol Des 13(2):99

    Article  CAS  Google Scholar 

  4. Rarey M, Degen J, Reulecke I (2006) In: Lengauer T (ed) Bioinformatics – from genomes to therapies. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  5. Rarey M (2001) In: Lengauer T (ed) Bioinformatics – from genomes to drugs, vol. I. Wiley-VCH, Heidelberg, p 315

    Chapter  Google Scholar 

  6. Abagyan R, Totrov M (2001) Curr Opin Chem Biol 5:375

    Article  CAS  Google Scholar 

  7. Schulz-Gasch T, Stahl M (2004) Drug Discovery Today: Technologies

  8. Wang R, Lu Y, Wang S (2003) J Med Chem 46:2287

    Article  CAS  Google Scholar 

  9. Wang R, Lu Y, Fang X, Wang S (2004) J Chem Inf Comput Sci 44:2114

    Article  CAS  Google Scholar 

  10. Marsden PM, Puvanendrampillai D, Mitchell JBO, Glen RC (2004) Org Biomol Chem 47:3032

    Google Scholar 

  11. Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337

    Article  CAS  Google Scholar 

  12. Stahl M, Rarey M (2001) J Med Chem 44:1035

    Article  CAS  Google Scholar 

  13. Dobson CM (2004) Nature 432:824

    Article  CAS  Google Scholar 

  14. Lipinski C, Hopkins A (2004) Nature 432:855

    Article  CAS  Google Scholar 

  15. Nikitin S, Zaitseva N, Demina O, Solovieva V, Mazin E, Mikhalve S, Smolov M, Rubinov A, Vlasov P, Lepikhin D, Khachko D, Fokin V, Queen C, Zosimov V (2005) J Comput-Aided Mol Des 19:47

    Article  CAS  Google Scholar 

  16. Jahnke W, Flörsheimer A, Blommers MJJ, Paris CG, Heim J, Nalin CM, Perez LB (2003) Curr Topics Med Chem 3:69

    Article  CAS  Google Scholar 

  17. Banerjee AL, Swanson M, Roy BC, Jia X, Haldar MK, Mallik S, Srivastava DK (2004) J Am Chem Soc 126:10875

    Article  CAS  Google Scholar 

  18. Lyne PD, Kenny PW, Cosgrove DA, Deng C, Zabludoff S, Wendoloski JJ, Ashwell S (2004) J Med Chem 47(8):1962

    Article  CAS  Google Scholar 

  19. Krier M, de Araújo-Júnior JX, Schmitt M, Duranton J, Justiano-Basaran H, Lugnier C, Bourguignon J-J, Rognan D (2005) J Med Chem 48(11):3816

    Article  CAS  Google Scholar 

  20. Mestres J, Fradera X (2004) Curr Top Med Chem 4(7):687

    Article  Google Scholar 

  21. Güner OF (ed) (2000) Pharmacophore perception, development and use in drug design. International University Line, La Jolla, California, USA

    Google Scholar 

  22. Claussen H, Gastreich M, Apelt V, Greene J, Hindle SA, Lemmen C (2004) Curr Drug Discov Technol 49–60

  23. Degen J, Rarey M (2006) Chem Med Chem 854–868 (FlexNovo can be obtained through BioSolveIT GmbH, St. Augustin, Germany, http://www.biosolveit.de)

  24. Leach AR, Bryce RA, Robinson AJ (2000) J Mol Graph Model 18(4–5):358

    Article  CAS  Google Scholar 

  25. Corina v 3.10. Molecular Networks GmbH, http://www.mol-net.de

  26. Sadowski J, Gasteiger J (1993) Chem Rev 93:2567

    Article  CAS  Google Scholar 

  27. Available Chemicals Directory (ACD). MDL Information Systems Inc., http://www.mdli.com/products/experiment/available_chem_dir

  28. Kisliuk RL (2003) Curr Pharm Des 9(31):2615

    Article  CAS  Google Scholar 

  29. Rosowsky A (1999) Curr Med Chem 6(4):329

    CAS  Google Scholar 

  30. Wright JE, Yurasek GK, Chen YN, Rosowsky A (2003) Biochem Pharmacol 65(9):1427

    Article  CAS  Google Scholar 

  31. Vaidya CM, Wright JE, Rosowsky A (2002) J Med Chem 45(8):1690

    Article  CAS  Google Scholar 

  32. Wright JE, Vaidya CM, Chen Y, Rosowsky A (2000) Biochem Pharmacol 60(1):41

    Article  CAS  Google Scholar 

  33. Rosowsky A, Wright JE, Vaidya CM, Forsch RA (2000) Pharmacol Ther 85(3):191

    Article  CAS  Google Scholar 

  34. Rosowsky A, Wright JE, Vaidya CM, Bader H, Forsch RA, Mota CE, Pardo J, Chen CS, Chen YN (1998) J Med Chem 41(26):5310

    Article  CAS  Google Scholar 

  35. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Science 289:1938

    Article  CAS  Google Scholar 

  36. Allen FH (2002) Acta Cryst B 58:380

    Article  Google Scholar 

  37. Bruno IJ, Cole JC, Kessler M, Luo J, Motherwell WDS, Purkis LH, Taylor R, Smith BR, Cooper RI, Harris SE, Orpen AG (2004) J Chem Inf Comput Sci 44(6):2133

    Article  CAS  Google Scholar 

  38. Huang N, Nagarsekar A, Xia GJ, Hayashi J, MacKerell AD Jr (2004) J Med Chem 47:3502

    Article  CAS  Google Scholar 

  39. Krämer O, Hazemann I, Podjarny AD, Klebe G (2004) Proteins Struct Funct Genet 55:814

    Article  Google Scholar 

  40. Pegg SC, Haresco JJ, Kuntz ID (2001) J Comput-Aided Mol Des 15:911

    Article  CAS  Google Scholar 

  41. Muegge I, Martin YC, Hajduk PJ, Fesik SW (1999) J Med Chem 42:2498

    Article  CAS  Google Scholar 

  42. Pan Y, Huang N, Cho S, MacKerell ADJ (2003) J Chem Inf Comput Sci 43:267

    Article  CAS  Google Scholar 

  43. Rarey M, Dixon JS (1998) J Comput-Aided Mol Des 12:471

    Article  CAS  Google Scholar 

  44. Rarey M, Stahl M (2001) J Comput-Aided Mol Des 15:497

    Article  CAS  Google Scholar 

  45. Kramer B, Rarey M, Lengauer T (1999) Proteins 37:228

    Article  CAS  Google Scholar 

  46. Rarey M (2001) In: Lengauer T (ed) Bioinformatics, vol. 1. Wiley-VCH, Weinheim, p 315

    Google Scholar 

  47. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261(3):470

    Article  CAS  Google Scholar 

  48. Rarey M, Kramer B, Lengauer T (1997) J Comput-Aided Mol Des 11:369

    Article  CAS  Google Scholar 

  49. Rarey M, Kramer B, Lengauer T (1999) Bioinformatics 15:243

    Article  CAS  Google Scholar 

  50. BioSolveIT GmbH http://www.biosolveit.de/FlexX. Address: An der Ziegelei 75, St. Augustin, Germany. BioSolveIT obtained exclusive rights to further develop and market the Flex* suite of programs

  51. Böhm H-J (1992) J Comput-Aided Mol Des 6:61

    Article  Google Scholar 

  52. Rarey M, Lengauer T (2000) Persp Drug Dis Des 20:63

    Article  CAS  Google Scholar 

  53. Böhm H-J, Klebe G, Kubinyi H (1996) Wirkstoffdesign. Spektrum Akademischer Verlag GmbH, Heidelberg

    Google Scholar 

  54. Hindle SA, Rarey M, Buning C, Lengauer T (2002) J Comput-Aided Mol Des 16:129

    Article  CAS  Google Scholar 

  55. Hindle SA, Stahl M, Rarey M (2003) In: Proceedings of Euro-QSAR 2002. Blackwell Publishing Ltd, Oxford UK

  56. SMARTS is a molecular substructure language invented by Daylight Chemical Information Systems, Inc. http://www.daylight.com/learn

  57. Hurst T (1994) J Chem Inf Comput Sci 34:190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully appreciate comments and hints from Hugo Kubinyi. Thanks also to Robert Klein (Bayer CropScience in Frankfurt, Germany) who helped us during our correlation investigations. We extend our gratitude to Birte Seebeck at University of Hamburg for compiling combinatorial libraries. This work has been partly funded by Schering AG, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Gastreich.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gastreich, M., Lilienthal, M., Briem, H. et al. Ultrafast de novo docking combining pharmacophores and combinatorics. J Comput Aided Mol Des 20, 717–734 (2006). https://doi.org/10.1007/s10822-006-9091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9091-x

Keywords

Navigation