Journal of Computer-Aided Molecular Design

, Volume 20, Issue 7–8, pp 427–436 | Cite as

Ab initio computational modeling of long loops in G-protein coupled receptors

  • Sandhya Kortagere
  • Amitava Roy
  • Ernest L. Mehler
Original Paper


A newly developed approach for predicting the structure of segments that connect known elements of secondary structure in proteins has been applied to some of the longer loops in the G-protein coupled receptors (GPCRs) rhodopsin and the dopamine receptor D2R. The algorithm uses Monte Carlo (MC) simulation in a temperature annealing protocol combined with a scaled collective variables (SCV) technique to search conformation space for loop structures that could belong to the native ensemble. Except for rhodopsin, structural information is only available for the transmembrane helices (TMHs), and therefore the usual approach of finding a single conformation of lowest energy has to be abandoned. Instead the MC search aims to find the ensemble located at the absolute minimum free energy, i.e., the native ensemble. It is assumed that structures in the native ensemble can be found by an MC search starting from any conformation in the native funnel. The hypothesis is that native structures are trapped in this part of conformational space because of the high-energy barriers that surround the native funnel. In this work it is shown that the crystal structure of the second extracellular loop (e2) of rhodopsin is a member of this loop’s native ensemble. In contrast, the crystal structure of the third intracellular loop is quite different in the different crystal structures that have been reported. Our calculations indicate, that of three crystal structures examined, two show features characteristic of native ensembles while the other one does not. Finally the protocol is used to calculate the structure of the e2 loop in D2R. Here, the crystal structure is not known, but it is shown that several side chains that are involved in interaction with a class of substituted benzamides assume conformations that point into the active site. Thus, they are poised to interact with the incoming ligand.


Calculation of loop structure of GPCRs Long loops in rhodopsin Dopamine receptor loops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Computational support was provided by the National Science Foundation Terascale Computing System at the Pittsburgh Supercomputing Center. The authors also acknowledge access to the computer facilities at the Institute of Computational Biomedicine (ICB) of Weill Medical College of Cornell University. Support of the work by NIH Grants R01-DA15170, R01-MH063162 and P01-DA012923 is gratefully acknowledged.


  1. 1.
    Lessel U, Schomburg D (1999) Proteins 37:56CrossRefGoogle Scholar
  2. 2.
    Petoukhov MV, Eady NA, Brown KA, Svergun DI (2002) Biophys J 83:3113CrossRefGoogle Scholar
  3. 3.
    Visiers I, Ballesteros JA, Weinstein H (2002) In: Iyengar I, Hildebrandt J (eds) Three dimensional representations of GPCR structures and mechanisms, in Methods Enzymol. Academic Press, New YorkGoogle Scholar
  4. 4.
    Mehler EL, Periole X, Hassan SA, Weinstein H (2002) J Comp Aided Mol Design 16:841CrossRefGoogle Scholar
  5. 5.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, LeTrong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739CrossRefGoogle Scholar
  6. 6.
    Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) PNAS 99:5982CrossRefGoogle Scholar
  7. 7.
    Li J, Edwards PC, Burghammer B, Villa C, Schertler GFX (2004) J Mol Biol 343:1409CrossRefGoogle Scholar
  8. 8.
    Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) Annu Rev Biophys Biomol Struct 32:375CrossRefGoogle Scholar
  9. 9.
    Ballesteros JA, Shi L, Javitch JA (2001) Mol Pharmacol 60:1Google Scholar
  10. 10.
    Shi L, Javitch JA (2002) Annu Rev Pharmacol Toxicol 42:437CrossRefGoogle Scholar
  11. 11.
    Pierce KL, Premont RT, Lefkowitz RJ (2002) Nat Rev Mol Cell Biol 3:639CrossRefGoogle Scholar
  12. 12.
    Rapp CS, Friesner RA (1999) PROTEINS Struct Funct Genet 35:173CrossRefGoogle Scholar
  13. 13.
    Xiang ZX, Soto CS, Honig B (2002) PNAS 99:7432CrossRefGoogle Scholar
  14. 14.
    Liu Z, Mao F, Li W, Han Y, Lai L (2000) J Mol Mod 6:1CrossRefGoogle Scholar
  15. 15.
    Hornak V, Simmerling C (2003) PROTEINS 51:577CrossRefGoogle Scholar
  16. 16.
    Rosenbach D, Rosenfeld R (1995) Protein Sci 4:496CrossRefGoogle Scholar
  17. 17.
    Hassan SA, Mehler EL, Weinstein H (2002) In: Hark K, Schlick T (eds) Structure calculations of protein segments connecting domains with defined secondary structure: A simulated annealing Monte Carlo combined with biased scaled collective variables technique, in Lecture notes in computational science and engineering. Springer Verlag, Ag., New York, p 197Google Scholar
  18. 18.
    Hassan SA, Mehler EL, Zhang D, Weinstein H (2003) Proteins 51:109CrossRefGoogle Scholar
  19. 19.
    Rohl CA, Strauss CEM, Chivian D, Baker D (2004) Proteins 55:656CrossRefGoogle Scholar
  20. 20.
    Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) Proteins 55:351CrossRefGoogle Scholar
  21. 21.
    DePristo MA, de Bakker PIW, Lovell SC, Blundell TL (2003) Proteins 51:41CrossRefGoogle Scholar
  22. 22.
    de Bakker PIW, DePristo MA, Burke DF, Blundell TL (2003) Proteins 51:21CrossRefGoogle Scholar
  23. 23.
    Das B, Meirovitch H (2003) Proteins 51:470CrossRefGoogle Scholar
  24. 24.
    Zhang H, Lai L, Wang L, Han Y, Tang Y (1997) Biopolymers 41:61CrossRefGoogle Scholar
  25. 25.
    MacKinnon R (2003) FEBS Lett 555:62CrossRefGoogle Scholar
  26. 26.
    Tappura K, Lahtela-Kakkonen M, Teleman O (2000) J Comp Chem 21:388CrossRefGoogle Scholar
  27. 27.
    Cheng X, Hornak V, Simmerling C (2004) J Phys Chem B 108:426CrossRefGoogle Scholar
  28. 28.
    Hansmann UHE, Okamoto Y (1999) Curr Opin Struct Biol 9:177CrossRefGoogle Scholar
  29. 29.
    Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141CrossRefGoogle Scholar
  30. 30.
    Woods CJ, Essex JW, King MA (2003) J Phys Chem B 107:13703CrossRefGoogle Scholar
  31. 31.
    Woods CJ, Essex JW, King MA (2003) J Phys Chem B 107:13711CrossRefGoogle Scholar
  32. 32.
    Mehler EL, Hassan SA, Kortagere S, Weinstein H (2006) PROTEINS: Struct Func Genet 64:in EarlyViewGoogle Scholar
  33. 33.
    Noguti T, Go N (1985) Biopolymers 24:527CrossRefGoogle Scholar
  34. 34.
    Anfinsen CB (1973) Science 181:223CrossRefGoogle Scholar
  35. 35.
    Hassan SA, Guarnieri F, Mehler EL (2000) J Phys Chem B 104:6478CrossRefGoogle Scholar
  36. 36.
    Hassan SA, Mehler EL (2001) Int J Quant Chem 83:193CrossRefGoogle Scholar
  37. 37.
    Hassan SA, Mehler EL (2002) PROTEINS: Struct Funct Genet 47:45CrossRefGoogle Scholar
  38. 38.
    Li XF, Hassan SA, Mehler EL (2005) Proteins 60:464CrossRefGoogle Scholar
  39. 39.
    Ben-Naim A (1980) Hydrophobic interactions. New York, Plenum PressGoogle Scholar
  40. 40.
    Chandler D (2002) Nature 417:491CrossRefGoogle Scholar
  41. 41.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187CrossRefGoogle Scholar
  42. 42.
    Periole X, Ceruso MA, Mehler EL (2004) Biochemistry 43:6858CrossRefGoogle Scholar
  43. 43.
    Hassan SA, Mehler EL (2005) Int J Quant Chem 102:986CrossRefGoogle Scholar
  44. 44.
    Moennigmann M, Floudas CA (2005) PROTEINS: Struct Funct Genet 61:748CrossRefGoogle Scholar
  45. 45.
    Fiser A, Kinh Gian Do R, Sali A (2000) Protein Sci, 1753Google Scholar
  46. 46.
    Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571CrossRefGoogle Scholar
  47. 47.
    Shi L, Javitch JA (2004) Proc Nat Acad Sci (USA) 101:440CrossRefGoogle Scholar
  48. 48.
    Javitch JA, Ballesteros JA Weinstein H, Chen J (1998) Biochemistry 37:998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Sandhya Kortagere
    • 1
  • Amitava Roy
    • 1
  • Ernest L. Mehler
    • 1
  1. 1.Department of Physiology and BiophysicsWeill-Cornell Medical CollegeNew YorkUSA

Personalised recommendations