Advertisement

Journal of Computer-Aided Molecular Design

, Volume 19, Issue 1, pp 47–63 | Cite as

A very large diversity space of synthetically accessible compounds for use with drug design programs

  • Sergey Nikitin
  • Natalia Zaitseva
  • Olga Demina
  • Vera Solovieva
  • Evgeny Mazin
  • Sergey Mikhalev
  • Maxim Smolov
  • Anatoly Rubinov
  • Peter Vlasov
  • Dmitry Lepikhin
  • Denis Khachko
  • Valery Fokin
  • Cary Queen
  • Viktor Zosimov
Article

Abstract

We have constructed a very large virtual diversity space containing more than 1013 chemical compounds. The diversity space is built from about 400 combinatorial libraries, which have been expanded by choosing sizeable collections of suitable R-groups that can be attached to each link point of their scaffolds. These R-group collections have been created by selecting reagents that have drug-like properties from catalogs of available chemicals. As members of known combinatorial libraries, the compounds in the diversity space are in general synthetically accessible and useful as potential drug leads. Hence, the diversity space can be used as a vast source of compounds by a de novo drug design program. For example, we have used such a program to generate inhibitors of HIV integrase enzyme that exhibited activity in the micromolar range.

Keywords

combinatorial library de novo drug design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schneider, G., Böhm, H.-J. 2002Drug Discov. Today764PubMedGoogle Scholar
  2. 2.
    http://www.mdli.com/products/experiment/available_ chem_dir/index.jspGoogle Scholar
  3. 3.
    Nishibata, Y., Itai, A. 1991Tetrahedron418985CrossRefGoogle Scholar
  4. 4.
    Gehlhaar, D.K., Moerder, K.E., Zichi, D., Sherman, C.J., Ogden, R.C., Freer, S.T. 1995J. Med. Chem.38466CrossRefPubMedGoogle Scholar
  5. 5.
    Wang, R., Gao, Y., Lai, L. 2000J. Mol. Model6498CrossRefGoogle Scholar
  6. 6.
    Clark, D.E., Frenkel, D., Levy, S.A., Li, J., Murray, C.W., Robson, B., Waszkowycz, B., Westhead, D.R. 1995J. Comput.-Aided Mol. Design913CrossRefGoogle Scholar
  7. 7.
    Murray, C.W., Clark, D.E., Auton, T.R., Firth, M.A., Li, J., Sykes, R.A., Waszkowycz, B., Westhead, D.R., Young, S.C. 1997J. Comput.-Aided Mol. Design11193CrossRefGoogle Scholar
  8. 8.
    Sun, Y., Ewing, T.J.A., Skillman, A.G., Kuntz, I.D. 1998J. Comput.-Aided Mol. Design12597CrossRefGoogle Scholar
  9. 9.
    Leach, A.R., Bradshaw, J., Green, D.V.S., Hann, M.M., Delany, J.J.,III 1999J. Chem. Inf. Comput. Sci.391161CrossRefPubMedGoogle Scholar
  10. 10.
    Martin, E.J., Critchlow, R.E. 1999J. Comb. Chem.132CrossRefPubMedGoogle Scholar
  11. 11.
    Shi, S., Peng, Z., Kostrowicki, J., Paderes, G., Kuki, A. 2000J. Mol. Graph. Model18478CrossRefPubMedGoogle Scholar
  12. 12.
    Sheridan, R.P., SanFeliciano, S.G., Kearsley, S.K. 2000J. Mol. Graph. Model18320CrossRefPubMedGoogle Scholar
  13. 13.
    Lobanov, V.S., Agrafiotis, D.K. 2002Comb. Chem. High Throughput Screen5167PubMedGoogle Scholar
  14. 14.
    Cramer, R.D., Patterson, D.E., Clark, R.D., Soltanshahi, F., Lawless, M.S. 1998J. Chem. Inf. Comput. Sci.381010CrossRefGoogle Scholar
  15. 15.
    Kick, E.K., Roe, D.C., Skillman, A.G., Liu, G., Ewing, T.J.A., Sun, Y., Kuntz, I.D., Ellman, J.A. 1997Chem. Biol.4297CrossRefPubMedGoogle Scholar
  16. 16.
    Bräse, S., Dahmen, S., Pfefferkorn, M. 2000J. Comb. Chem.2710CrossRefPubMedGoogle Scholar
  17. 17.
    Dolle, R.E., Nelson, K.H.,Jr. 1999J. Comb. Chem.1235CrossRefPubMedGoogle Scholar
  18. 18.
    Dolle, R.E. 2000J. Comb. Chem.2383CrossRefPubMedGoogle Scholar
  19. 19.
    Dolle, R.E. 2001J. Comb. Chem.3477CrossRefPubMedGoogle Scholar
  20. 20.
    Dolle, R.E. 2002J. Comb. Chem.41CrossRefPubMedGoogle Scholar
  21. 21.
    Franzen, R.G. 2000J. Comb. Chem.2195CrossRefPubMedGoogle Scholar
  22. 22.
    Gustafson, G.R., Baldino, C.M., O’Donnell, M.-M.E., Sheldon, A., Tarsa, R.J., Verni, C.J., Coffen, D.L. 1998Tetrahedron544051CrossRefGoogle Scholar
  23. 23.
    Sigma-Aldrich Co., http://www.sigmaaldrich.comGoogle Scholar
  24. 24.
    Acros Organics http://www.acros.beGoogle Scholar
  25. 25.
    Lancaster Synthesis http://www.lancastersynthesis.comGoogle Scholar
  26. 26.
    TCI Tokyo Kasei Kogyo Co., Ltd., http://www.tokyokasei.co.jp/catalogue/index.htmlGoogle Scholar
  27. 27.
    Ullman, J.R. 1976J. Associat. Comp. Machinery2331Google Scholar
  28. 28.
    HyperChem(TM), Hypercube, Inc., Gainesville, Florida, USA, http://www.hyper.comGoogle Scholar
  29. 29.
    Smith, A.L., Stevenson, G.I., Swain, C.J., Castro, J.L. 1998Tetrahedron Lett.398317CrossRefGoogle Scholar
  30. 30.
    Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. 1997Adv. Drug Deliv. Rev.233CrossRefGoogle Scholar
  31. 31.
    Haque, T.S., Skillman, A.G., Lee, C.E., Habashita, H., Gluzman, I.Y., Ewing, T.J.A., Goldberg, D.E., Kuntz, I.D., Ellman, J.A. 1999J. Med. Chem.421428CrossRefPubMedGoogle Scholar
  32. 32.
    Kallus, C., Opatz, T., Wunberg, T., Schmidt, W., Henke, S., Kunz, H. 1999Tetrahedron Lett.407783CrossRefGoogle Scholar
  33. 33.
    MDL Drug Data Report (MDDR), http://www.mdli.comGoogle Scholar
  34. 34.
    Muryshev, A.E., Tarasov, D.N., Butygin, A.V., Butygina, O.Yu., Aleksandrov, A.B., Nikitin, S.M. 2003J. Comput.-Aided Mol. Design17597CrossRefGoogle Scholar
  35. 35.
    Willett, P., Barnard, J.M., Downs, G.M. 1998J. Chem. Inf. Comput. Sci.,38983Google Scholar
  36. 36.
    Clark R.D. (2001). In Ghose A.K., Viswanadhan V.N. (Eds.), Combinatorial Library Design and Evaluation, Marcel Dekker, Inc., New York, pp. 337–362Google Scholar
  37. 37.
    Gillet V.J., Willett P. (2001). In Ghose A.K. and Viswanadhan V.N. (Eds.), Combinatorial Library Design and Evaluation, Marcel Dekker, Inc., New York, pp. 379–398Google Scholar
  38. 38.
    Sayasith, K., Sauve, G., Yelle, J. 2001Exp. Opin. Ther. Targets5444Google Scholar
  39. 39.
    Zouhiri, F., Mouscadet, J-F., Mekouar, K., Desmaële, D., Savoure, D., Leh, H., Subra, F., Le Bret, M., Auclair, C., d’Angelo, J. 2000J. Med. Chem.431533CrossRefPubMedGoogle Scholar
  40. 40.
    South, M.S., Dice, T.A., Parlow, J.J. 2000Biotechnol. Bioeng.7151CrossRefPubMedGoogle Scholar
  41. 41.
    Verner, E., Katz, B.A., Spencer, J.R., Allen, D., Hataye, J., Hruzewicz, W., Hui, H.C., Kolesnikov, A., Li, Y., Luong, C., Martelli, A., Radika, K., Rai, R., She, M., Shrader, W., Sprengeler, P.A., Trapp, S., Wang, J., Young, W.B., Mackman, R.L. 2001J. Med. Chem.442753CrossRefPubMedGoogle Scholar
  42. 42.
    Silen, J.L., Lu, A.T., Solas, D.W., Gore, M.A., Maclean, D., Shah, N.H., Ciffin, J.M., Bhinderwala, N.S., Wang, Y., Tsutsui, K.T., Look, G.C., Campbell, D.A., Hale, R.L., Navre, M., DeLuca-Flaherty, C.R. 1998Antimicrob. Agents Chemother.421447PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Sergey Nikitin
    • 1
  • Natalia Zaitseva
    • 1
  • Olga Demina
    • 1
  • Vera Solovieva
    • 1
  • Evgeny Mazin
    • 1
  • Sergey Mikhalev
    • 1
  • Maxim Smolov
    • 1
  • Anatoly Rubinov
    • 1
  • Peter Vlasov
    • 1
  • Dmitry Lepikhin
    • 1
  • Denis Khachko
    • 1
  • Valery Fokin
    • 2
  • Cary Queen
    • 1
  • Viktor Zosimov
    • 1
  1. 1.Algodign LLCMoscowRussia
  2. 2.Department of ChemistryThe Scripps Research InstituteLa JollaUSA

Personalised recommendations