Journal of Computer-Aided Molecular Design

, Volume 18, Issue 6, pp 375–388 | Cite as

Homology modeling, force field design, and free energy simulation studies to optimize the activities of histone deacetylase inhibitors

  • Hwangseo Park
  • Sangyoub Lee


As an effort to develop therapeutics for cancer treatments, a number of effective histone deacetylase inhibitors with structural diversity have been discovered. To gain insight into optimizing the activity of an identified lead compound, a computational protocol sequentially involving homology modeling, docking experiments, molecular dynamics simulation, and free energy perturbation calculations was applied for rationalizing the relative activities of known histone deacetylase inhibitors. With the newly developed force field parameters for the coordination environment of the catalytic zinc ion in hand, the computational strategy proved to be successful in predicting the rank orders for 12 derivatives of three hydroxamate-based inhibitor scaffolds with indole amide, pyrrole, and sulfonamide moieties. The results showed that the free energy of an inhibitor in aqueous solution should be an important factor in determining the binding free energy. Hence, in order to enhance the inhibitory activity by adding or substituting a chemical group, the increased stabilization in solution due to the structural changes must be overcome by a stronger enzyme-inhibitor interaction. It was also found that to optimize inhibitor potency, the hydrophobic head of an inhibitor should be elongated or enlarged so that it can interact with Pro29 and His28 that are components of the flexible loop at the top of the active site.

docking free energy perturbation histone deacetylase homology modeling lead optimization molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jenuwein, T. and Allis, C.D., Science, 293 (2001) 1074.Google Scholar
  2. 2.
    Johnstone, R.W., Nat. Rev. Drug Discov., 1 (2002) 287.Google Scholar
  3. 3.
    Marks, P.A., Rifkind, R.A., Richon, V.M., Breslow, R., Miller, T. and Kelly, W.K., Nat. Rev. Cancer, 1 (2001) 194.Google Scholar
  4. 4.
    Gray, S.G. and Ekstrom, T.J., Exp. Cell Res., 262 (2001) 75.Google Scholar
  5. 5.
    Imai, S., Armstrong, C.M., Kaeberlein, M. and Guarente, L., Nature, 403 (2000) 795.Google Scholar
  6. 6.
    Finnin, M.S., Donigian, J.R. and Pavletich, N.P., Nat. Struct. Biol., 8 (2001) 621.Google Scholar
  7. 7.
    Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R. and Pavletich, N.P., Nature, 401 (1999) 188.Google Scholar
  8. 8.
    Lipscomb, W.N. and Sträter, N., Chem. Rev., 96 (1996) 2375.Google Scholar
  9. 9.
    Yoshida, M., Kijima, M., Akita, M. and Beppu, T., J. Biol. Chem., 265 (1990) 17174.Google Scholar
  10. 10.
    Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S. and Beppu, T., J. Biol. Chem., 268 (1993) 22429.Google Scholar
  11. 11.
    Nakajima, H., Kim, Y.B., Terano, H., Yoshida, M. and Horinouchi, S., Exp. Cell. Res., 241 (1988) 126.Google Scholar
  12. 12.
    Darkin-Rattray, S., Gurnett, A.M., Myres, R.W., Dulski, P.M., Crumely, K.M., Allocco, J.J., Cannova, C., Meinke, P.T., Colletti, S.L., Bednarek, M.A., Singh, S.B., Goetz, M.A., Dombrowski, A.W., Polishook, J.D. and Schimatz, D.M., Proc. Natl. Acad. Sci. USA, 93 (1996) 13143.Google Scholar
  13. 13.
    Kelly, W.K., O'Connor, O.A. and Marks, P.A., Exp. Opin. Investig. Drugs, 11 (2001) 1695.Google Scholar
  14. 14.
    Dai, Y., Guo, Y., Guo, J., Pease, L.J., Li, J., Marcotte, P.A., Glaser, K.B., Tapang, P., Albert, D.H., Richardson, P.L., Davidsen, S.K. and Michaelides, M.R., Bioorg. Med. Chem. Lett., 13 (2003) 1897.Google Scholar
  15. 15.
    Bouchain, G., Leit, S., Frechette, S., Khalil, E.A., Lavoie, R., Moradei, O., Woo, S.H., Fournel, M., Yan, P.T., Kalita, A., Trachy-Bourget, M.-C., Beaulieu, C., Li, Z., Robert, M.F., MacLeod, A.R., Besterman, J.M. and Delorme, D., J. Med. Chem., 46 (2003) 820.Google Scholar
  16. 16.
    Mai, A., Massa, S., Ragno, R., Cerbara, I., Jesacher, F., Loidl, P. and Brosch, G., J. Med. Chem., 46 (2003) 512.Google Scholar
  17. 17.
    Uesato, S., Kitagawa, M., Nagaoka, Y., Maeda, T., Kuwajima, H. and Yamori, T., Bioorg. Med. Chem. Lett., 12 (2002) 1347.Google Scholar
  18. 18.
    Remiszewski, S.W., Sambucetti, L.C., Atadja, P., Bair, K.W., Cornell, W.D., Green, M.A., Howell, K.L., Jung, M., Kwon, P., Trogani, N. and Walker, H., J. Med. Chem., 45 (2002) 753.Google Scholar
  19. 19.
    Mai, A., Massa, S., Ragno, R., Esposito, M., Sbardella, G., Nocca, G., Scatena, R., Jesacher, F., Loidl, P. and Brosch, G., J. Med. Chem., 45 (2002) 1778.Google Scholar
  20. 20.
    Wittich, S., Scherf, H., Xie, C., Brosch, G., Loidl, P., Gerhauser, C. and Jung, M., J. Med. Chem., 45 (2002) 3296.Google Scholar
  21. 21.
    Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A. and Klein, P.S., J. Biol. Chem., 276 (2001) 36734.Google Scholar
  22. 22.
    Göttlicher, M., Minucci, S., Zhu, P., Krämer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Coco, F.L., Nervi, C., Pelicci, P.G. and Heinzel, T., EMBO J., 20 (2001) 6969.Google Scholar
  23. 23.
    Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T. and Nakanishi, O., Proc. Natl. Acad. Sci. USA, 96 (1999) 4592.Google Scholar
  24. 24.
    Frey, R.R., Wada, C.K., Garland, R.B., Curtin, M.L., Michaelides, M.R., Li, J., Pease, L.J., Glaser, K.B., Marcotte, P.A., Bouska, J.J., Murphy, S.S. and Davison, S.K., Bioorg. Med. Chem. Lett., 12 (2002) 3443.Google Scholar
  25. 25.
    Kapustin, G.V., Fejer, G., Gronlund, J.L., McCafferty, D.G., Seto, E. and Etzkorn, F.A., Org. Lett., 5 (2003) 3053.Google Scholar
  26. 26.
    Pina, I.C., Gautschi, J.T., Wang, G.-Y.-S., Sanders, M.L., Schmitz, F.J., France, D., Cornell-Kennon, S., Sambucetti, L.C., Remiszewski, S.W., Perez, L.B., Bair, K.W. and Crews, P., J. Org. Chem., 68 (2003) 3866.Google Scholar
  27. 27.
    Wada, C.K., Frey, R.R., Ji, Z., Curtin, M.L., Garland, R.B., Holms, J.H., Li, J., Pease, L.J., Guo, J., Glaser, K.B., Marcotte, P.A., Richardson, P.L., Murphy, S.S., Bouska, J.J., Tapang, P., Magoc, T.J., Albert, D.H., Davidsen, S.K. and Michaelides, M.R., Bioorg. Med. Chem. Lett., 13 (2003) 3331.Google Scholar
  28. 28.
    Baker, D. and Sali, A., Science, 294 (2001) 93.Google Scholar
  29. 29.
    Evers, A. and Klebe, G., Angew. Chem. Int. Ed. Engl., 43 (2004) 248.Google Scholar
  30. 30.
    Bairoch, A. and Apweiler, R., Nucleic Acids Res., 27 (1999)Google Scholar
  31. 31.
    Sonnhammer, E.L.L., Eddy, S.R. and Durbin, R., Proteins, 28 (1997) 405.Google Scholar
  32. 32.
    Thompson, J.D., Higgins, D.G. and Gibson, T.J., Nucleic Acids Res., 22 (1994) 4673.Google Scholar
  33. 33.
    Sali, A. and Blundell, T.L., J. Mol. Biol., 234 (1993) 779.Google Scholar
  34. 34.
    Fiser, A., Do, R.K.G. and Sali, A., Protein Sci., 9 (2000) 1753.Google Scholar
  35. 35.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.Google Scholar
  36. 36.
    Hoops, S.C., Anderson, K.W. and Merz, K.M., Jr., J. Am. Chem. Soc., 113 (1991) 8262.Google Scholar
  37. 37.
    Ryde, U., Proteins, 21 (1995) 40.Google Scholar
  38. 38.
    Stote, R.H. and Karplus, M., Proteins, 23 (1995) 12.Google Scholar
  39. 39.
    Fox, T. and Kollman, P.A., Phys. Chem. B, 102 (1998) 8070.Google Scholar
  40. 40.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Cald-well, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.Google Scholar
  41. 41.
    Bayly, C.A., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.Google Scholar
  42. 42.
    Vanommeslaeghe, K., Alsenoy, C.V., Proft, F.D., Martins, J.C., Tourwe, D. and Geerlings, P., Org. Biol. Chem., 1 (2003) 2951.Google Scholar
  43. 43.
    Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E., Ross, W.S., Simmerling, C., Darden, T., Merz, K.M., Jr., Stanton, R.V., Cheng, A., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P. and Kollman, P.A., AMBER 7, University of California, San Francisco, 2002.Google Scholar
  44. 44.
    Zwanzig, R.J., J. Chem. Phys., 22 (1954) 1420.Google Scholar
  45. 45.
    Beveridge, D.L. and DiCapua, F.M., Annu. Rev. Biophys. Biophys. Chem., 18 (1989) 431.Google Scholar
  46. 46.
    Bash, P.A., Singh, U.C., Brown, F.K., Langridge, R. and Kollman, P.A., Science, 235 (1987) 574.Google Scholar
  47. 47.
    Merz, K.M., Jr. and Kollman, P.A., J. Am. Chem. Soc., 111 (1989) 5649.Google Scholar
  48. 48.
    Rao, B.G., Tilton, R.F. and Singh, U.C., J. Am. Chem. Soc., 114 (1992) 4447.Google Scholar
  49. 49.
    Rastelli, G., Thomas, B., Kollman, P.A. and Santi, D.V., J. Am. Chem. Soc., 117 (1995) 7213.Google Scholar
  50. 50.
    Essex, J.W., Severance, D.L., Tirado-Rives, J. and Jorgensen, W.L., J. Phys. Chem. B., 101 (1997) 9663.Google Scholar
  51. 51.
    Reddy, M.R. and Erion, M.D., J. Am. Chem. Soc., 123 (2001) 6246.Google Scholar
  52. 52.
    Guimaraes, C.R.W. and Bicca de Alencastro, R., J. Med. Chem., 45 (2002) 4995.Google Scholar
  53. 53.
    Berendsen, H.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.Google Scholar
  54. 54.
    Ryckaert, J.P., Ciccotti, G. and Berendsen, H.C., J. Comput. Phys., 23 (1977) 327.Google Scholar
  55. 55.
    Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., J. Appl. Crystallogr., 26 (1993) 283.Google Scholar
  56. 56.
    Munagala, N., Basus, V.J. and Wang, C.C., Biochemistry, 40 (2001) 4303.Google Scholar
  57. 57.
    Gill, H.S., Pfluegl, G.M.U. and Eisenberg, D., Biochemistry, 41 (2002) 9863.Google Scholar
  58. 58.
    Huntley, J.J.A., Scrofani, S.D.B., Osborne, M.J., Wright, P.E. and Dyson, H.J., Biochemistry, 39 (2000) 13356.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hwangseo Park
    • 1
  • Sangyoub Lee
    • 1
  1. 1.School of Chemistry and Molecular Engineering, and Center for Molecular CatalysisSeoul National UniversitySeoulKorea

Personalised recommendations