Concurrent design of hierarchical materials and structures



Significant achievements have been demonstrated in computational materials design and its broadening application in concurrent engineering. Best practices are assessed and opportunities for improvement identified, with implications for modeling and simulation in science and engineering. Successful examples of integration in undergraduate education await broader dissemination.


Materials design Multiscale modeling Robust design Concurrent engineering 


  1. 1.
    Ashby M.F.: Materials Selection in Mechanical Design, 2nd edn. Butterworth-Heinemann, Oxford (1999)Google Scholar
  2. 2.
    Apelian, D.: National research council report. In: Accelerating Technology Transition. National Academies Press, Washington (2004)Google Scholar
  3. 3.
    Jou, H.-J., Voorhees, P., Olson, G.B.: Computer simulations for the prediction of microstructure/property variation in aeroturbine disks. In: Green, K.A., Pollock, T.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, pp. 877–886 (2004)Google Scholar
  4. 4.
    Gall K., Horstemeyer M.F., McDowell D.L., Fan J.: Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al-Si alloys. Mech. Mater. 32(5), 277–301 (2000)CrossRefGoogle Scholar
  5. 5.
    Gall K., Horstemeyer M.F., Degner B.W., McDowell D.L., Fan J.: On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy. Int. J. Fract. 108, 207–233 (2001)CrossRefGoogle Scholar
  6. 6.
    Fan J., McDowell D.L., Horstemeyer M.F., Gall K.: Cyclic plasticity at pores and inclusions in cast Al-Si alloys. Eng. Fract. Mech. 70(10), 1281–1302 (2003)CrossRefGoogle Scholar
  7. 7.
    McDowell D.L., Gall K., Horstemeyer M.F., Fan J.: Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng. Fract. Mech. 70, 49–80 (2003)CrossRefGoogle Scholar
  8. 8.
    Olson G.B.: Brains of steel: mind melding with materials. Int. J. Eng. Educ. 17(4–5), 468–471 (2001)Google Scholar
  9. 9.
    Olson G.B.: Computational design of hierarchically structured materials. Science 277(5330), 1237–1242 (1997)CrossRefGoogle Scholar
  10. 10.
    Shu, C., Rajagopalan, A., Ki, X., Rajan, K.: Combinatorial materials design through database science. In: Materials Research Society Symposium—Proceedings, vol. 804, Combinatorial and Artificial Intelligence Methods in Materials Science II, pp. 333–341 (2003)Google Scholar
  11. 11.
    Wu R., Freeman A.J., Olson G.B.: First principles determination of the effects of phosphorous and boron on iron grain-boundary cohesion. Science 266, 376–380 (1994)CrossRefADSGoogle Scholar
  12. 12.
    Zhong L., Freeman A.J., Wuand R., Olson G.B.: Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron. Phys. Rev. B 21, 938–941 (2000)Google Scholar
  13. 13.
    Geng W.T., Freeman A.J., Olson G.B.: Influence of alloying additions on grain boundary cohesion of transition metals: first-principles determination and its phenomenological extension. Phys. Rev. B 63, 165415 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Olson G.B.: Designing a new material world. Science 288, 993–998 (2000)CrossRefGoogle Scholar
  15. 15.
    Lee J.-H., Shishidou T., Zhao Y.-J., Freeman A.J., Olson G.B.: Strong interface adhesion in Fe/TiC. Philos. Mag. 85, 3683–3697 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Billinge, S.J.E., Rajan, K., Sinnot, S.B.: From Cyberinfrastructure to Cyberdiscovery in Materials Science: Enhancing Outcomes in Materials Research, Education and Outreach. Report from NSF-sponsored workshop held in Arlington, Virginia, August 3–5. (2006)
  17. 17.
    Oden, J.T., Belytschko, T., Fish, J., Hughes, T.J.R., Johnson, C., Keyes, D., Laub, A., Petzold, L., Srolovitz, D., Yip, S.: Simulation-Based Engineering Science: Revolutionizing Engineering Science Through Simulation. Report of NSF Blue Ribbon Panel on Simulation-Based Engineering Science, May. (2006)
  18. 18.
    Pollock, T.M., Allison, J.: Committee on Integrated Computational Materials Engineering: Developing a Roadmap for a Grand Challenge in Materials. National Materials Advisory Board, National Academy of Engineering. (2007)
  19. 19.
    McDowell, D.L., Story, T.L.: New Directions in Materials Design Science and Engineering. Report of NSF DMR-sponsored workshop held in Atlanta, GA, October 19–21 (1998)Google Scholar
  20. 20.
    Choi, H.-J.: A robust design method for model and propagated uncertainty. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA (2005)Google Scholar
  21. 21.
    Panchal, J.H., Choi, H.-J., Shepherd, J., Allen, J.K., McDowell, D.L., Mistree, F.: A strategy for simulation-based multiscale, multifunctional design of products and design processes. In: ASME Design Automation Conference, Long Beach, CA. Paper Number: DETC2005-85316 (2005)Google Scholar
  22. 22.
    Choi H.-J., McDowell D.L., Allen J.K., Rosen D., Mistree F.: An inductive design exploration method for the integrated design of multi-scale materials and products. J. Mech. Des. 130(3), 031402 (2008)CrossRefGoogle Scholar
  23. 23.
    Seepersad, C.C., Fernandez, M.G., Panchal, J.H., Choi, H.-J., Allen, J.K., McDowell, D.L., Mistree, F.: Foundations for a systems-based approach for materials design. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA MAO, Albany, NY. AIAA-2004-4300 (2004)Google Scholar
  24. 24.
    Isukapalli S.S., Roy A., Georgopoulos P.G.: Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal. 18(3), 351–363 (1998)PubMedCrossRefGoogle Scholar
  25. 25.
    Mistree F., Hughes O.F., Bras B.A.: The compromise decision support problem and the adaptive linear programming algorithm. In: Kamat, M.P. (eds) Structural Optimization: Status and Promise, vol. 150, pp. 251–290. AIAA, Washington (1993)Google Scholar
  26. 26.
    Chen, W.: A robust concept exploration method for configuring complex systems. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (1995)Google Scholar
  27. 27.
    Taguchi G.: Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream. ASME Press, New York (1993)Google Scholar
  28. 28.
    Choi H.-J., Austin R., Shepherd J., Allen J.K., McDowell D.L., Mistree F., Benson D.J.: An approach for robust design of reactive powder metal mixtures based on non-deterministic micro-scale shock simulation. J. Comput.-Aided Mater. Des. 12(1), 57–85 (2005)CrossRefADSGoogle Scholar
  29. 29.
    Panchal, J.H.: A framework for simulation-based integrated design of multiscale products and design processes. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA (2005)Google Scholar
  30. 30.
    Seepersad, C.C.: A robust topological preliminary design exploration method with materials design applications. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (2004)Google Scholar
  31. 31.
    Seepersad C.C., Kumar R.S., Allen J.K., Mistree F., McDowell D.L.: Multifunctional design of prismatic cellular materials. J. Comput.-Aided Mater. Des. 11(2–3), 163–181 (2005)ADSGoogle Scholar
  32. 32.
    Seepersad C.C., Allen J.K., McDowell D.L., Mistree F.: Multifunctional topology design of cellular structures. J. Mech. Des. 130(3), 031404-1-13 (2008)Google Scholar
  33. 33.
    Panchal, J.H., Choi, H.-J., Allen, J.K., McDowell, D.L., Mistree F.: Designing design processes for integrated materials and products realization: a multifunctional energetic structural material example. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2006 (2006)Google Scholar
  34. 34.
    Zhou M., McDowell D.L.: Equivalent continuum for dynamically deforming atomistic particle systems. Philos. Mag. A 82(13), 2547–2574 (2002)ADSGoogle Scholar
  35. 35.
    Muralidharan K., Deymier P.A., Simmons J.H.: A concurrent multiscale finite difference time domain/molecular dynamics method for bridging an elastic continuum to an atomic system. Model. Simul. Mater. Sci. Eng. 11(4), 487–501 (2003)CrossRefADSGoogle Scholar
  36. 36.
    Chung P.W., Namburu R.R.: On a formulation for a multiscale atomistic-continuum homogenization method. Int. J. Solids Struct. 40, 2563–2588 (2003)MATHCrossRefGoogle Scholar
  37. 37.
    Curtarolo S., Ceder G.: Dynamics of an inhomogeneously coarse grained multiscale system. Phys. Rev. Lett. 88(25), 255504 (2002)PubMedCrossRefADSGoogle Scholar
  38. 38.
    Kulkarni Y., Knap J., Ortiz M.: A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature. J. Mech. Phys. Solids 56, 1417–1449 (2008)CrossRefADSMathSciNetMATHGoogle Scholar
  39. 39.
    Rafii-Tabar H., Hua L., Cross M.: A multi-scale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate. J. Phys. Condens. Matter 10(11), 2375–2387 (1998)CrossRefADSGoogle Scholar
  40. 40.
    Rudd R.E., Broughton J.Q.: Concurrent coupling of length scales in solid state systems. Phys. Status Solidi B 217(1), 251–291 (2000)CrossRefADSGoogle Scholar
  41. 41.
    Qu S., Shastry V., Curtin W.A., Miller R.E.: A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model. Simul. Mater. Sci. Eng. 13(7), 1101–1118 (2005)CrossRefADSGoogle Scholar
  42. 42.
    Cherkaoui M.: Constitutive equations for twinning and slip in low stacking fault energy metals: a crystal plasticity type model for moderate strains . Philos. Mag. 83(31–34), 3945–3958 (2003)CrossRefADSGoogle Scholar
  43. 43.
    Svoboda J., Gamsjäger E., Fischer F.D.: Modelling of massive transformation in substitutional alloys. Metall. Mater. Trans. A 37, 125–132 (2006)CrossRefGoogle Scholar
  44. 44.
    Idesman A.V., Levitas V.I., Preston D.L., Cho J.-Y.: Finite element simulations of martensitic phase transitions and microstructure based on strain softening model. J. Mech. Phys. Solids 53(3), 495–523 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Needleman A., Rice J.R.: Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metall. 28(10), 1315–1332 (1980)CrossRefGoogle Scholar
  46. 46.
    Cocks A.C.F.: Variational principles, numerical schemes and bounding theorems for deformation by Nabarro-Herring creep. J. Mech. Phys. Solids 44(9), 1429–1452 (1996)CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Cleri F., D’Agostino G., Satta A., Colombo L.: Microstructure evolution from the atomic scale up. Comp. Mater. Sci. 24, 21–27 (2002)CrossRefGoogle Scholar
  48. 48.
    Ghosh S., Bai J., Raghavan P.: Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mech. Mater. 39(3), 241–266 (2007)CrossRefGoogle Scholar
  49. 49.
    Kouznetsova V., Geers M.G.D., Brekelmans W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54(8), 1235–1260 (2002)MATHCrossRefGoogle Scholar
  50. 50.
    Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Meth. Appl. Mech. Eng. 193(48/51), 5525–5550 (2004)MATHCrossRefGoogle Scholar
  51. 51.
    Vernerey F., Liu W.K., Moran B.: Multi-scale micromorphic theory for hierarchical materials. J. Mech. Phys. Solids 55(12), 2603–2651 (2007)CrossRefADSMathSciNetMATHGoogle Scholar
  52. 52.
    Zbib H.M., de la Rubia T.D., Bulatov V.: A multiscale model of plasticity based on discrete dislocation dynamics. J. Eng. Mater. Technol. 124(1), 78–87 (2002)CrossRefGoogle Scholar
  53. 53.
    Zbib H.M., de la Rubia T.D.: A multiscale model of plasticity. Int. J. Plast. 18(9), 1133–1163 (2002)MATHCrossRefGoogle Scholar
  54. 54.
    Roy A., Acharya A.: Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: II. J. Mech. Phys. Solids 54, 1711–1743 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  55. 55.
    Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990) ISBN 0521477581MATHGoogle Scholar
  56. 56.
    McDowell D.L.: Internal state variable theory. In: Yip, S., Horstemeyer, M.F.(eds) Handbook of Materials Modeling, Part A: Methods, pp. 1151–1170. Springer, The Netherlands (2005)CrossRefGoogle Scholar
  57. 57.
    Aifantis E.C.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987)MATHCrossRefGoogle Scholar
  58. 58.
    Aifantis E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)CrossRefGoogle Scholar
  59. 59.
    Beeler J.R.: Radiation Effects Computer Experiments. North Holland, Amsterdam (1982)Google Scholar
  60. 60.
    Heinisch H.L.: Simulating the production of free defects in irradiated metals. Nucl. Instrum. Methods B 102, 47 (1995)CrossRefADSGoogle Scholar
  61. 61.
    Shenoy M.M., Kumar R.S., McDowell D.L.: Modeling effects of nonmetallic inclusions on LCF in DS nickel-base superalloys. Int. J. Fatigue 27, 113–127 (2005)CrossRefGoogle Scholar
  62. 62.
    Shenoy M.M., Zhang J., McDowell D.L.: Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach. Fatigue Fract. Eng. Mater. Struct. 30(10), 889–904 (2007)CrossRefGoogle Scholar
  63. 63.
    Wang A.-J., Kumar R.S., Shenoy M.M., McDowell D.L.: Microstructure-based multiscale constitutive modeling of γ-γ′ nickel-base superalloys. Int. J. Multiscale Comp. Eng. 4(5–6), 663–692 (2006)CrossRefGoogle Scholar
  64. 64.
    Hao S., Moran B., Liu W.-K., Olson G.B.: A hierarchical multi-physics model for design of high toughness steels. J. Comput.-Aided Mater. Des. 10, 99–142 (2003)CrossRefADSGoogle Scholar
  65. 65.
    McDowell D.L.: Simulation-assisted materials design for the concurrent design of materials and products. JOM 59(9), 21–25 (2007)CrossRefGoogle Scholar
  66. 66.
    Adams B.L., Lyon M., Henrie B.: Microstructures by design: linear problems in elastic-plastic design. Int. J. Plast. 20(8–9), 1577–1602 (2004)MATHCrossRefGoogle Scholar
  67. 67.
    Adams B.L., Gao X.: 2-point microstructure archetypes for improved elastic properties. J. Comput. Aided Mater. Des. 11(2–3), 85–101 (2004)CrossRefADSGoogle Scholar
  68. 68.
    Lyon M., Adams B.L.: Gradient-based non-linear microstructure design. J. Mech. Phys. Solids 52(11), 2569–2586 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  69. 69.
    Kalidindi, S.R., Houskamp, J., Proust, G., Duvvuru, H.: Microstructure sensitive design with first order homogenization theories and finite element codes. Materials Science Forum, vol. 495–497, n PART 1, Textures of Materials, ICOTOM 14—Proceedings of the 14th International Conference on Textures of Materials, pp. 23–30 (2005)Google Scholar
  70. 70.
    Kalidindi S.R., Houskamp J.R., Lyon M., Adams B.L.: Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int. J. Plast. 20(8–9), 1561–1575 (2004)MATHCrossRefGoogle Scholar
  71. 71.
    Knezevic M., Kalidindi S.R., Mishra R.K.: Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution. Int. J. Plast. 24(2), 327–342 (2008)CrossRefGoogle Scholar
  72. 72.
    Ganapathysubramanian S., Zabaras N.: Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties. Comput. Meth. Appl. Mech. Eng. 193(45–47), 5017–5034 (2004)MATHCrossRefGoogle Scholar
  73. 73.
    Sankaran S., Zabaras N.: Computing property variability of polycrystals induced by grain size and orientation uncertainties. Acta Mater 55(7), 2279–2290 (2007)CrossRefGoogle Scholar
  74. 74.
    Li, D.S., Bouhattate, J., Garmestani, H.: Processing path model to describe texture evolution during mechanical processing. Materials Science Forum, vol. 495–497, n PART 2, Textures of Materials, ICOTOM 14—Proceedings of the 14th International Conference on Textures of Materials, pp. 977–982 (2005)Google Scholar
  75. 75.
    Kuehmann C.J., Olson G.B.: Gear steels designed by computer. Adv. Mat. Process. 153, 40–43 (1998)Google Scholar
  76. 76.
    Kuehmann C.J., Tufts B., Trester P.: Computational design for ultra-high-strength alloy. Adv. Mat. Process. 166(1), 37–40 (2008)Google Scholar
  77. 77.
    Suh N.P.: Axiomatic design theory for systems. Res. Eng. Des. 10(4), 189–209 (1998)CrossRefGoogle Scholar
  78. 78.
    Bender, M.: unpublished doctoral research, Northwestern University (2008)Google Scholar
  79. 79.
    Kuehmann C.J., Olson G.B.: Computer-aided systems design of advanced steels. In: Hawbolt, E.B. (eds) Proceedings of the International Symposium on Phase Transformations During Thermal/Mechanical Processing of Steel, pp. 345–356. Metallurgical Society of Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver (1995)Google Scholar
  80. 80.
    Stephenson, T.A., Campbell, C.E., Olson, G.B.: Systems design of advanced bearing steels. In: Richmond, R.J., Wu, S.T. (eds.) Advanced Earth to Orbit Propulsion Technology, vol. 3174, no. 2, pp. 299–307. NASA Conference publication (1992)Google Scholar
  81. 81.
    Campbell C.E., Olson G.B.: Systems design of high performance stainless steels I. Conceptual and computational design. J. Comput.-Aided Mater. Des. 7, 145–170 (2001)CrossRefADSGoogle Scholar
  82. 82.
    Campbell C.E., Olson G.B.: Systems design of high performance stainless steels II. Prototype characterization. J. Comput.-Aided Mater. Des. 7, 171–194 (2001)CrossRefADSGoogle Scholar
  83. 83.
    Carr, S.H., D’Oyen, R., Olson, G.B.: Design of thermoset resins with optimal graded structures. In: Hui, D. (ed.) Proceedings of the 4th International Conference on Composites Engineering, 205 pp. International Community for Composites Engineering (1997)Google Scholar
  84. 84.
    Neubauer, C.M., Thomas, J., Garci, M., Breneman, K., Olson, G.B., Jennings, H.M.: Cement hydration. In: Proceedings of the 10th International Congress on the Chemistry of Cement. Amarkai AB and Congrex Goteborg AB, Sweden (1997)Google Scholar
  85. 85.
    Olson, G.B., Freeman, A.J., Voorhees, P.W., Ghosh, G., Perepezko, J., Eberhart, M., Woodward, C.: Quest for noburnium: 1300C cyberalloy. In: Kim, Y.W., Carneiro, T. (eds.) International Symposium on Niobium for High Temperature Applications, pp. 113–122. TMS, Warrendale, PA (2004)Google Scholar
  86. 86.
    Saha A., Olson G.B.: Computer-aided design of transformation toughened blast resistant naval hull steels: part I. J. Comput.-Aided Mater. Des. 14, 177–200 (2007)CrossRefADSGoogle Scholar
  87. 87.
    Saha A., Olson G.B.: Prototype evaluation of transformation toughened blast resistant naval hull steels: part II. J. Comput.-Aided Mater. Des. 14, 201–233 (2007)CrossRefADSGoogle Scholar
  88. 88.
    Olson, G.B.: Materials design—an undergraduate course. In: Liaw, P.K. (ed.) Morris E. Fine Symposium, pp. 41–48, TMS-AIME, Warrendale PA (1991)Google Scholar
  89. 89.
    Manuel M.V., McKenna A.F., Olson G.B.: Hierarchical model for coaching technical design teams. Int. J. Eng. Ed. 24(2), 260–265 (2008)Google Scholar
  90. 90.
    Hirsch P.L., Schwom B.L., Yarnoff C., Anderson J.C., Kelso D.M., Olson G.B., Colgate J.E.: Engineering design and communication: the case for interdisciplinary collaboration. Int. J. Eng. Ed. 17, 342–348 (2001)Google Scholar
  91. 91.
    McKenna A.F., Colgate J.E., Carr S.H., Olson G.B.: IDEA: formalizing the foundation for an engineering design education. Int. J. Eng. Ed. 22, 671–678 (2006)Google Scholar
  92. 92.
    McKenna, A.F., Colgate, J.E., Olson, G.B., Carr, S.H.: Exploring adaptive Expertise as a target for engineering design education. In: Proceedings of the IDETC/CIE, pp. 1–6 (2001)Google Scholar
  93. 93.
    Files, B., Olson, G.B.: Terminator 3: biomimetic self-healing alloy composite. In: Proceedings of the 2nd Internatioal Conference on Shape Memory & Superelastic Technologies, pp. 281–286, SMST-97, Santa Clara CA (1997)Google Scholar
  94. 94.
    Olson, G.B., Hartman, H.: Martensite and life—displacive transformations as biological processes. Proc ICOMAT-82. J. de Phys. 43, C4-855 (1982)Google Scholar
  95. 95.
    Olson G.B.: Advances in theory: martensite by design. Mater. Sci. Eng. A 438, 48–54 (2006)CrossRefGoogle Scholar
  96. 96.
    Rajan K.: Learning from systems biology: an “omics” approach to materials design. JOM 60(3), 53–55 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Northwestern University and QuesTek Innovations LLCEvanstonUSA

Personalised recommendations