Skip to main content
Log in

Concurrent design of hierarchical materials and structures

  • Published:
Scientific Modeling and Simulation SMNS

Abstract

Significant achievements have been demonstrated in computational materials design and its broadening application in concurrent engineering. Best practices are assessed and opportunities for improvement identified, with implications for modeling and simulation in science and engineering. Successful examples of integration in undergraduate education await broader dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashby M.F.: Materials Selection in Mechanical Design, 2nd edn. Butterworth-Heinemann, Oxford (1999)

    Google Scholar 

  2. Apelian, D.: National research council report. In: Accelerating Technology Transition. National Academies Press, Washington (2004)

  3. Jou, H.-J., Voorhees, P., Olson, G.B.: Computer simulations for the prediction of microstructure/property variation in aeroturbine disks. In: Green, K.A., Pollock, T.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, pp. 877–886 (2004)

  4. Gall K., Horstemeyer M.F., McDowell D.L., Fan J.: Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al-Si alloys. Mech. Mater. 32(5), 277–301 (2000)

    Article  Google Scholar 

  5. Gall K., Horstemeyer M.F., Degner B.W., McDowell D.L., Fan J.: On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy. Int. J. Fract. 108, 207–233 (2001)

    Article  CAS  Google Scholar 

  6. Fan J., McDowell D.L., Horstemeyer M.F., Gall K.: Cyclic plasticity at pores and inclusions in cast Al-Si alloys. Eng. Fract. Mech. 70(10), 1281–1302 (2003)

    Article  Google Scholar 

  7. McDowell D.L., Gall K., Horstemeyer M.F., Fan J.: Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng. Fract. Mech. 70, 49–80 (2003)

    Article  Google Scholar 

  8. Olson G.B.: Brains of steel: mind melding with materials. Int. J. Eng. Educ. 17(4–5), 468–471 (2001)

    Google Scholar 

  9. Olson G.B.: Computational design of hierarchically structured materials. Science 277(5330), 1237–1242 (1997)

    Article  CAS  Google Scholar 

  10. Shu, C., Rajagopalan, A., Ki, X., Rajan, K.: Combinatorial materials design through database science. In: Materials Research Society Symposium—Proceedings, vol. 804, Combinatorial and Artificial Intelligence Methods in Materials Science II, pp. 333–341 (2003)

  11. Wu R., Freeman A.J., Olson G.B.: First principles determination of the effects of phosphorous and boron on iron grain-boundary cohesion. Science 266, 376–380 (1994)

    Article  ADS  Google Scholar 

  12. Zhong L., Freeman A.J., Wuand R., Olson G.B.: Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron. Phys. Rev. B 21, 938–941 (2000)

    Google Scholar 

  13. Geng W.T., Freeman A.J., Olson G.B.: Influence of alloying additions on grain boundary cohesion of transition metals: first-principles determination and its phenomenological extension. Phys. Rev. B 63, 165415 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Olson G.B.: Designing a new material world. Science 288, 993–998 (2000)

    Article  CAS  Google Scholar 

  15. Lee J.-H., Shishidou T., Zhao Y.-J., Freeman A.J., Olson G.B.: Strong interface adhesion in Fe/TiC. Philos. Mag. 85, 3683–3697 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Billinge, S.J.E., Rajan, K., Sinnot, S.B.: From Cyberinfrastructure to Cyberdiscovery in Materials Science: Enhancing Outcomes in Materials Research, Education and Outreach. Report from NSF-sponsored workshop held in Arlington, Virginia, August 3–5. http://www.mcc.uiuc.edu/nsf/ciw_2006/ (2006)

  17. Oden, J.T., Belytschko, T., Fish, J., Hughes, T.J.R., Johnson, C., Keyes, D., Laub, A., Petzold, L., Srolovitz, D., Yip, S.: Simulation-Based Engineering Science: Revolutionizing Engineering Science Through Simulation. Report of NSF Blue Ribbon Panel on Simulation-Based Engineering Science, May. http://www.nsf.gov/pubs/reports/sbes_final_report.pdf (2006)

  18. Pollock, T.M., Allison, J.: Committee on Integrated Computational Materials Engineering: Developing a Roadmap for a Grand Challenge in Materials. National Materials Advisory Board, National Academy of Engineering. http://www7.nationalacademies.org/nmab/CICME_home_page.html (2007)

  19. McDowell, D.L., Story, T.L.: New Directions in Materials Design Science and Engineering. Report of NSF DMR-sponsored workshop held in Atlanta, GA, October 19–21 (1998)

  20. Choi, H.-J.: A robust design method for model and propagated uncertainty. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA (2005)

  21. Panchal, J.H., Choi, H.-J., Shepherd, J., Allen, J.K., McDowell, D.L., Mistree, F.: A strategy for simulation-based multiscale, multifunctional design of products and design processes. In: ASME Design Automation Conference, Long Beach, CA. Paper Number: DETC2005-85316 (2005)

  22. Choi H.-J., McDowell D.L., Allen J.K., Rosen D., Mistree F.: An inductive design exploration method for the integrated design of multi-scale materials and products. J. Mech. Des. 130(3), 031402 (2008)

    Article  Google Scholar 

  23. Seepersad, C.C., Fernandez, M.G., Panchal, J.H., Choi, H.-J., Allen, J.K., McDowell, D.L., Mistree, F.: Foundations for a systems-based approach for materials design. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA MAO, Albany, NY. AIAA-2004-4300 (2004)

  24. Isukapalli S.S., Roy A., Georgopoulos P.G.: Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal. 18(3), 351–363 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. Mistree F., Hughes O.F., Bras B.A.: The compromise decision support problem and the adaptive linear programming algorithm. In: Kamat, M.P. (eds) Structural Optimization: Status and Promise, vol. 150, pp. 251–290. AIAA, Washington (1993)

    Google Scholar 

  26. Chen, W.: A robust concept exploration method for configuring complex systems. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (1995)

  27. Taguchi G.: Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream. ASME Press, New York (1993)

    Google Scholar 

  28. Choi H.-J., Austin R., Shepherd J., Allen J.K., McDowell D.L., Mistree F., Benson D.J.: An approach for robust design of reactive powder metal mixtures based on non-deterministic micro-scale shock simulation. J. Comput.-Aided Mater. Des. 12(1), 57–85 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Panchal, J.H.: A framework for simulation-based integrated design of multiscale products and design processes. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA (2005)

  30. Seepersad, C.C.: A robust topological preliminary design exploration method with materials design applications. Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (2004)

  31. Seepersad C.C., Kumar R.S., Allen J.K., Mistree F., McDowell D.L.: Multifunctional design of prismatic cellular materials. J. Comput.-Aided Mater. Des. 11(2–3), 163–181 (2005)

    ADS  Google Scholar 

  32. Seepersad C.C., Allen J.K., McDowell D.L., Mistree F.: Multifunctional topology design of cellular structures. J. Mech. Des. 130(3), 031404-1-13 (2008)

    Google Scholar 

  33. Panchal, J.H., Choi, H.-J., Allen, J.K., McDowell, D.L., Mistree F.: Designing design processes for integrated materials and products realization: a multifunctional energetic structural material example. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2006 (2006)

  34. Zhou M., McDowell D.L.: Equivalent continuum for dynamically deforming atomistic particle systems. Philos. Mag. A 82(13), 2547–2574 (2002)

    ADS  CAS  Google Scholar 

  35. Muralidharan K., Deymier P.A., Simmons J.H.: A concurrent multiscale finite difference time domain/molecular dynamics method for bridging an elastic continuum to an atomic system. Model. Simul. Mater. Sci. Eng. 11(4), 487–501 (2003)

    Article  ADS  CAS  Google Scholar 

  36. Chung P.W., Namburu R.R.: On a formulation for a multiscale atomistic-continuum homogenization method. Int. J. Solids Struct. 40, 2563–2588 (2003)

    Article  MATH  Google Scholar 

  37. Curtarolo S., Ceder G.: Dynamics of an inhomogeneously coarse grained multiscale system. Phys. Rev. Lett. 88(25), 255504 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  38. Kulkarni Y., Knap J., Ortiz M.: A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature. J. Mech. Phys. Solids 56, 1417–1449 (2008)

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  39. Rafii-Tabar H., Hua L., Cross M.: A multi-scale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate. J. Phys. Condens. Matter 10(11), 2375–2387 (1998)

    Article  ADS  CAS  Google Scholar 

  40. Rudd R.E., Broughton J.Q.: Concurrent coupling of length scales in solid state systems. Phys. Status Solidi B 217(1), 251–291 (2000)

    Article  ADS  CAS  Google Scholar 

  41. Qu S., Shastry V., Curtin W.A., Miller R.E.: A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model. Simul. Mater. Sci. Eng. 13(7), 1101–1118 (2005)

    Article  ADS  CAS  Google Scholar 

  42. Cherkaoui M.: Constitutive equations for twinning and slip in low stacking fault energy metals: a crystal plasticity type model for moderate strains . Philos. Mag. 83(31–34), 3945–3958 (2003)

    Article  ADS  CAS  Google Scholar 

  43. Svoboda J., Gamsjäger E., Fischer F.D.: Modelling of massive transformation in substitutional alloys. Metall. Mater. Trans. A 37, 125–132 (2006)

    Article  Google Scholar 

  44. Idesman A.V., Levitas V.I., Preston D.L., Cho J.-Y.: Finite element simulations of martensitic phase transitions and microstructure based on strain softening model. J. Mech. Phys. Solids 53(3), 495–523 (2005)

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  45. Needleman A., Rice J.R.: Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metall. 28(10), 1315–1332 (1980)

    Article  CAS  Google Scholar 

  46. Cocks A.C.F.: Variational principles, numerical schemes and bounding theorems for deformation by Nabarro-Herring creep. J. Mech. Phys. Solids 44(9), 1429–1452 (1996)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  47. Cleri F., D’Agostino G., Satta A., Colombo L.: Microstructure evolution from the atomic scale up. Comp. Mater. Sci. 24, 21–27 (2002)

    Article  CAS  Google Scholar 

  48. Ghosh S., Bai J., Raghavan P.: Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mech. Mater. 39(3), 241–266 (2007)

    Article  Google Scholar 

  49. Kouznetsova V., Geers M.G.D., Brekelmans W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54(8), 1235–1260 (2002)

    Article  MATH  Google Scholar 

  50. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Meth. Appl. Mech. Eng. 193(48/51), 5525–5550 (2004)

    Article  MATH  Google Scholar 

  51. Vernerey F., Liu W.K., Moran B.: Multi-scale micromorphic theory for hierarchical materials. J. Mech. Phys. Solids 55(12), 2603–2651 (2007)

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  52. Zbib H.M., de la Rubia T.D., Bulatov V.: A multiscale model of plasticity based on discrete dislocation dynamics. J. Eng. Mater. Technol. 124(1), 78–87 (2002)

    Article  Google Scholar 

  53. Zbib H.M., de la Rubia T.D.: A multiscale model of plasticity. Int. J. Plast. 18(9), 1133–1163 (2002)

    Article  MATH  Google Scholar 

  54. Roy A., Acharya A.: Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: II. J. Mech. Phys. Solids 54, 1711–1743 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990) ISBN 0521477581

    MATH  Google Scholar 

  56. McDowell D.L.: Internal state variable theory. In: Yip, S., Horstemeyer, M.F.(eds) Handbook of Materials Modeling, Part A: Methods, pp. 1151–1170. Springer, The Netherlands (2005)

    Chapter  Google Scholar 

  57. Aifantis E.C.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987)

    Article  MATH  Google Scholar 

  58. Aifantis E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Article  Google Scholar 

  59. Beeler J.R.: Radiation Effects Computer Experiments. North Holland, Amsterdam (1982)

    Google Scholar 

  60. Heinisch H.L.: Simulating the production of free defects in irradiated metals. Nucl. Instrum. Methods B 102, 47 (1995)

    Article  ADS  CAS  Google Scholar 

  61. Shenoy M.M., Kumar R.S., McDowell D.L.: Modeling effects of nonmetallic inclusions on LCF in DS nickel-base superalloys. Int. J. Fatigue 27, 113–127 (2005)

    Article  CAS  Google Scholar 

  62. Shenoy M.M., Zhang J., McDowell D.L.: Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach. Fatigue Fract. Eng. Mater. Struct. 30(10), 889–904 (2007)

    Article  CAS  Google Scholar 

  63. Wang A.-J., Kumar R.S., Shenoy M.M., McDowell D.L.: Microstructure-based multiscale constitutive modeling of γ-γ′ nickel-base superalloys. Int. J. Multiscale Comp. Eng. 4(5–6), 663–692 (2006)

    Article  CAS  Google Scholar 

  64. Hao S., Moran B., Liu W.-K., Olson G.B.: A hierarchical multi-physics model for design of high toughness steels. J. Comput.-Aided Mater. Des. 10, 99–142 (2003)

    Article  ADS  CAS  Google Scholar 

  65. McDowell D.L.: Simulation-assisted materials design for the concurrent design of materials and products. JOM 59(9), 21–25 (2007)

    Article  Google Scholar 

  66. Adams B.L., Lyon M., Henrie B.: Microstructures by design: linear problems in elastic-plastic design. Int. J. Plast. 20(8–9), 1577–1602 (2004)

    Article  MATH  CAS  Google Scholar 

  67. Adams B.L., Gao X.: 2-point microstructure archetypes for improved elastic properties. J. Comput. Aided Mater. Des. 11(2–3), 85–101 (2004)

    Article  ADS  Google Scholar 

  68. Lyon M., Adams B.L.: Gradient-based non-linear microstructure design. J. Mech. Phys. Solids 52(11), 2569–2586 (2004)

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  69. Kalidindi, S.R., Houskamp, J., Proust, G., Duvvuru, H.: Microstructure sensitive design with first order homogenization theories and finite element codes. Materials Science Forum, vol. 495–497, n PART 1, Textures of Materials, ICOTOM 14—Proceedings of the 14th International Conference on Textures of Materials, pp. 23–30 (2005)

  70. Kalidindi S.R., Houskamp J.R., Lyon M., Adams B.L.: Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int. J. Plast. 20(8–9), 1561–1575 (2004)

    Article  MATH  Google Scholar 

  71. Knezevic M., Kalidindi S.R., Mishra R.K.: Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution. Int. J. Plast. 24(2), 327–342 (2008)

    Article  CAS  Google Scholar 

  72. Ganapathysubramanian S., Zabaras N.: Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties. Comput. Meth. Appl. Mech. Eng. 193(45–47), 5017–5034 (2004)

    Article  MATH  Google Scholar 

  73. Sankaran S., Zabaras N.: Computing property variability of polycrystals induced by grain size and orientation uncertainties. Acta Mater 55(7), 2279–2290 (2007)

    Article  CAS  Google Scholar 

  74. Li, D.S., Bouhattate, J., Garmestani, H.: Processing path model to describe texture evolution during mechanical processing. Materials Science Forum, vol. 495–497, n PART 2, Textures of Materials, ICOTOM 14—Proceedings of the 14th International Conference on Textures of Materials, pp. 977–982 (2005)

  75. Kuehmann C.J., Olson G.B.: Gear steels designed by computer. Adv. Mat. Process. 153, 40–43 (1998)

    CAS  Google Scholar 

  76. Kuehmann C.J., Tufts B., Trester P.: Computational design for ultra-high-strength alloy. Adv. Mat. Process. 166(1), 37–40 (2008)

    CAS  Google Scholar 

  77. Suh N.P.: Axiomatic design theory for systems. Res. Eng. Des. 10(4), 189–209 (1998)

    Article  Google Scholar 

  78. Bender, M.: unpublished doctoral research, Northwestern University (2008)

  79. Kuehmann C.J., Olson G.B.: Computer-aided systems design of advanced steels. In: Hawbolt, E.B. (eds) Proceedings of the International Symposium on Phase Transformations During Thermal/Mechanical Processing of Steel, pp. 345–356. Metallurgical Society of Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver (1995)

    Google Scholar 

  80. Stephenson, T.A., Campbell, C.E., Olson, G.B.: Systems design of advanced bearing steels. In: Richmond, R.J., Wu, S.T. (eds.) Advanced Earth to Orbit Propulsion Technology, vol. 3174, no. 2, pp. 299–307. NASA Conference publication (1992)

  81. Campbell C.E., Olson G.B.: Systems design of high performance stainless steels I. Conceptual and computational design. J. Comput.-Aided Mater. Des. 7, 145–170 (2001)

    Article  ADS  Google Scholar 

  82. Campbell C.E., Olson G.B.: Systems design of high performance stainless steels II. Prototype characterization. J. Comput.-Aided Mater. Des. 7, 171–194 (2001)

    Article  ADS  Google Scholar 

  83. Carr, S.H., D’Oyen, R., Olson, G.B.: Design of thermoset resins with optimal graded structures. In: Hui, D. (ed.) Proceedings of the 4th International Conference on Composites Engineering, 205 pp. International Community for Composites Engineering (1997)

  84. Neubauer, C.M., Thomas, J., Garci, M., Breneman, K., Olson, G.B., Jennings, H.M.: Cement hydration. In: Proceedings of the 10th International Congress on the Chemistry of Cement. Amarkai AB and Congrex Goteborg AB, Sweden (1997)

  85. Olson, G.B., Freeman, A.J., Voorhees, P.W., Ghosh, G., Perepezko, J., Eberhart, M., Woodward, C.: Quest for noburnium: 1300C cyberalloy. In: Kim, Y.W., Carneiro, T. (eds.) International Symposium on Niobium for High Temperature Applications, pp. 113–122. TMS, Warrendale, PA (2004)

  86. Saha A., Olson G.B.: Computer-aided design of transformation toughened blast resistant naval hull steels: part I. J. Comput.-Aided Mater. Des. 14, 177–200 (2007)

    Article  ADS  CAS  Google Scholar 

  87. Saha A., Olson G.B.: Prototype evaluation of transformation toughened blast resistant naval hull steels: part II. J. Comput.-Aided Mater. Des. 14, 201–233 (2007)

    Article  ADS  CAS  Google Scholar 

  88. Olson, G.B.: Materials design—an undergraduate course. In: Liaw, P.K. (ed.) Morris E. Fine Symposium, pp. 41–48, TMS-AIME, Warrendale PA (1991)

  89. Manuel M.V., McKenna A.F., Olson G.B.: Hierarchical model for coaching technical design teams. Int. J. Eng. Ed. 24(2), 260–265 (2008)

    Google Scholar 

  90. Hirsch P.L., Schwom B.L., Yarnoff C., Anderson J.C., Kelso D.M., Olson G.B., Colgate J.E.: Engineering design and communication: the case for interdisciplinary collaboration. Int. J. Eng. Ed. 17, 342–348 (2001)

    Google Scholar 

  91. McKenna A.F., Colgate J.E., Carr S.H., Olson G.B.: IDEA: formalizing the foundation for an engineering design education. Int. J. Eng. Ed. 22, 671–678 (2006)

    Google Scholar 

  92. McKenna, A.F., Colgate, J.E., Olson, G.B., Carr, S.H.: Exploring adaptive Expertise as a target for engineering design education. In: Proceedings of the IDETC/CIE, pp. 1–6 (2001)

  93. Files, B., Olson, G.B.: Terminator 3: biomimetic self-healing alloy composite. In: Proceedings of the 2nd Internatioal Conference on Shape Memory & Superelastic Technologies, pp. 281–286, SMST-97, Santa Clara CA (1997)

  94. Olson, G.B., Hartman, H.: Martensite and life—displacive transformations as biological processes. Proc ICOMAT-82. J. de Phys. 43, C4-855 (1982)

  95. Olson G.B.: Advances in theory: martensite by design. Mater. Sci. Eng. A 438, 48–54 (2006)

    Article  CAS  Google Scholar 

  96. Rajan K.: Learning from systems biology: an “omics” approach to materials design. JOM 60(3), 53–55 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. McDowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, D.L., Olson, G.B. Concurrent design of hierarchical materials and structures. Sci Model Simul 15, 207–240 (2008). https://doi.org/10.1007/s10820-008-9100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-008-9100-6

Keywords

Navigation