Phase-field model during static recrystallization based on crystal-plasticity theory



A numerical model and computational procedure for static recrystallization are developed using a phase-field method coupled with crystal-plasticity theory. In this model, first, the microstructure and dislocation density during the deformation process of a polycrystalline metal are simulated using a finite element method based on strain-gradient crystal-plasticity theory. Second, the calculated data are mapped onto the regular grids used in the phase-field simulation. The stored energy is calculated from the dislocation density and is smoothed to avoid computational difficulty. Furthermore, the misorientation required for nucleation criteria is calculated at all grid points. Finally, phase-field simulation of the nucleation and growth of recrystallization is performed using the mapped data. By performing a series of numerical simulations based on the proposed numerical procedure, it has been confirmed that the recrystallization microstructure can be reproduced from the deformation microstructure.


Static recrystallization Phase-field method Crystal-plasticity Coupled numerical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raabe, D.: Computational Materials Science. Federal Republic of Germany (1998)Google Scholar
  2. 2.
    Humphreys, F.J., Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier (2004)Google Scholar
  3. 3.
    Srolovitz, D.J., Grest, G.S., Anderson, M.P.: Computer simulation of recrystallization—I. Homogeneous nucleation and growth. Acta metal. 34, 1833–1845 (1986)CrossRefGoogle Scholar
  4. 4.
    Hesselbarth, H.W., Gobel, I.R.: Simulation of recrystallization by cellular automata. Acta Metall. Mater. 39, 2135–2143 (1991)CrossRefGoogle Scholar
  5. 5.
    Miodownik, M.A.: A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys. J. Light Metals 2, 125–135 (2002)CrossRefGoogle Scholar
  6. 6.
    Raabe, D.: Scaling Monte Carlo kinetics of the Potts model using rate theory. Acta Mater. 48, 1617–1628 (2000)CrossRefGoogle Scholar
  7. 7.
    Rollet, A.D., Raabe, D.: A hybrid model for mesoscopic simulation of recrystallization. Comp. Mate. Sci. 21, 69–78 (2001)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993)CrossRefGoogle Scholar
  9. 9.
    Warren, J.A., Boettinger, W.J.: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metal. 43, 689 (1995)CrossRefGoogle Scholar
  10. 10.
    Kobayashi, R., Warren, J.A., Carter, W.C.: A continuum model of grain boundaries. Physica D 140, 141–150 (2000)CrossRefGoogle Scholar
  11. 11.
    Chen, L.-Q., Yang, W.: Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. Phy. Rev. B 50, 15752–15756 (1994)CrossRefGoogle Scholar
  12. 12.
    Steinbach, I., Pezzolla, F.: A generalized field method for multiphase transformations using interface fields. Physica D 134, 385–393 (1999)CrossRefGoogle Scholar
  13. 13.
    Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Statistical Physics 95, 1187–1220 (1999)CrossRefGoogle Scholar
  14. 14.
    Xiao, N., Tong, M., Lan, Y., Li, D., Li, Y.: Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite-ferrite transformation. Acta Meter. 54, 1265–1278 (2006)CrossRefGoogle Scholar
  15. 15.
    Lan, Y.J., Xiao, N.M., Li, D.Z., Li, Y.Y.: Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Meter. 53, 991–1003 (2005)CrossRefGoogle Scholar
  16. 16.
    Higa, Y., Sawada, Y., Tomita, Y.: Computational simulation of characteristic length dependent deformation behavior of polycrystalline metals. Trans. JSME A69, 523–529 (in Japanese) (2003)Google Scholar
  17. 17.
    Peirce, D., Shih, C.F., Needleman, A.: A tangent modulus method for rate dependent solids. Comput. Struc. 18, 875–887 (1984)CrossRefGoogle Scholar
  18. 18.
    Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London. Series A 348, 101–127 (1976)CrossRefGoogle Scholar
  19. 19.
    Pan, J., Rice, J.R.: Rate sensitivity of plastic flow and implications for yield-surface vertices. J. Solids Struct. 19, 973–987 (1983)CrossRefGoogle Scholar
  20. 20.
    Ohashi, T.: Numerical modelling of plastic multislip in metal crystals of f.c.c. type. Philos. Magaz. A 70, 793–803 (1994)CrossRefGoogle Scholar
  21. 21.
    Warren, J.A., Kobayashi, R., Lobkovskey, A.E., Carter, W.C.: Extending phase field models of solidification to polycrystalline materials. Acta Mater. 51, 6035–6058 (2003)CrossRefGoogle Scholar
  22. 22.
    Warren, J.A., Carter, W.C., Kobayashi, R.: A phase field model of the impingement of solidifying particles. Physica A 261, 159–166 (1998)CrossRefGoogle Scholar
  23. 23.
    Takaki, T., Fukuoka, T., Tomita, Y.: Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method. J. Crys. Growth 283, 263–278 (2005)CrossRefGoogle Scholar
  24. 24.
    Nakamachi, E., Ariyoshi, T., Kobayashi, Y., Hirose, M., Morimoto, H.: SEM-EBSD experimental and finite element analyses of plastic deformation induced crystal rotation of pure aluminium single crystals. Trans. Japan Soc. Mech. Eng. A 69, 817–822 (2003)Google Scholar
  25. 25.
    Kuo, C.-M., Chu, H.-H.: Plastic deformation mechanism of pure aluminum at low homologous temperatures. Mate. Sci. Eng. A 409, 59–66 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
  2. 2.Graduate School of Science and TechnologyKobe UniversityKobeJapan
  3. 3.Department of Mechanical System EngineeringOkinawa National College of TechnologyNagoJapan
  4. 4.Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations