Advertisement

Crack propagation along polymer/non-polymer interfaces

  • Willem-Pier Vellinga
  • Alexander Fedorov
  • Jeff T. De Hosson
Open Access
Article

Abstract

Mechanisms of the propagation of crack fronts along interfaces between a glassy polymer and metal or glass are discussed. Specifically, the systems studied are Poly-Ethylene Terephthalate (PETG) spin-coated on Al, PETG-glass and PETG hot-pressed on Cr-sputtered glass. Cracks studied propagate in an Assymetric Double Cantilever Beam (ADCB) geometry. Dependence of microscopic crack front geometry on propagation speed is found. The local stress state is found to have an impact on macroscopic as well as microscopic crack front geometry. Simple lattice model calculations of propagating crack fronts illustrate the impact of disorder and residual stress state on propagation mechanisms and macroscopic crack front shape respectively.

Keywords

Adhesion Crack propagation Residual stress ADCB Interface Polymer-metal 

Notes

Acknowledgements

This research was carried out under project number MC05223 in the framework of the Strategic Research programme of the Netherlands Institute for Metals Research in the Netherlands.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Kook S.-Y. and Dauskardt R.H. (2002). Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91(3): 1293–1303 CrossRefGoogle Scholar
  2. 2.
    Wouters O., Vellinga W.P., van Tijum R. and De Hosson J.Th.M. (2005). On the evolution of surface roughness during deformation of polycrystalline aluminum alloys. Acta Mater. 53(15): 4043–4050 CrossRefGoogle Scholar
  3. 3.
    Vellinga W.P., De Hosson J.Th.M. and Tijum R. (2007). Acta Mat 55(8): 2757 CrossRefGoogle Scholar
  4. 4.
    Fedorov A., Vellinga W.P., De Hosson J.Th.M. and Tijum R. (2007). J. App. Phys. 101(4): 043520 CrossRefGoogle Scholar
  5. 5.
    Sha Y., Hui C.Y., Kramer E.J., Hahn S.F. and Berglund C.A. (1996). Fracture toughness and failure mechanisms of epoxy/rubber-modified polystyrene(PS) interfaces reinforced by grafted chains. Macromolecules 29: 4728–4736 CrossRefGoogle Scholar
  6. 6.
    Bouchaud E. (2003). The morphology of fracture surfaces: a tool to understand crack propagation in complex materials. Surf. Rev. Lett. 10: 797 CrossRefGoogle Scholar
  7. 7.
    Schmittbuhl J. and Måløy K.J. (1997). Direct observation of self-affine crack propagation. Phys. Rev. Lett. 78: 3888–3891 CrossRefGoogle Scholar
  8. 8.
    Måløy K.J., Schmittbuhl J., Hansen A. and Batrouni G.G. (2003). Scaling and dynamics of an interfacial crack front. Int. J. Fract. 121: 9 CrossRefGoogle Scholar
  9. 9.
    Vellinga W.P., Timmerman R., van Tijum R. and De Hosson J.Th.M. (2006). In situ observations of crack propagation mechanisms along interfaces between confined polymer layers and glass. Appl. Phys. Lett. 88: 06912 CrossRefGoogle Scholar
  10. 10.
    Santucci S., Vanel L. and Ciliberto S. (2004). Subcritical statistics in rupture of fibrous materials: experiments and model. Phys. Rev. Lett. 93: 095505 CrossRefGoogle Scholar
  11. 11.
    Hutchinson J.W. and Suo Z. (1992). Mixed mode cracking in layered materials. Adv. Appl. Mech. 29: 63–199 CrossRefGoogle Scholar
  12. 12.
    Bernard B., Brown H.R., Hawker C.J., Kellock A.J. and Russell T.P. (1999). Adhesion of polymer interfaces reinforced with random and Diblock copolymers as a function of geometry. Macromolecules 32: 6254–6260 CrossRefGoogle Scholar
  13. 13.
    van den Bosch, M., Vellinga, W.P., Geers, M.G.D.: J. Fracture. (submitted)Google Scholar
  14. 14.
    Swadener J.G., Liechti K.M. and de Lozanne A.L. (1999). The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J. Mech. Phys. Solids 47: 223–258 CrossRefGoogle Scholar
  15. 15.
    He M.Y. and Evans A.G. (2004). Criterion for the avoidance of edge cracking in layered systems. J. Am. Cer. Soc. 87(8): 1418–1423CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Willem-Pier Vellinga
    • 1
  • Alexander Fedorov
    • 1
  • Jeff T. De Hosson
    • 1
  1. 1.Department of Applied Physics, Netherlands Institute for Metals Research and Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations