Journal of Computer-Aided Materials Design

, Volume 14, Issue 3, pp 367–378 | Cite as

Collision cascades in pure δ-plutonium

  • Alison Kubota
  • Wilhelm G. Wolfer
  • Steven M. Valone
  • Michael I. Baskes


Molecular dynamics simulations of the formation and annealing of large collision cascades in delta-phase plutonium are presented. The defect evolution is followed with time up to 2 ns. Simulations are performed with the MEAM potential at three different temperatures; at 600 K where the pure delta phase is thermodynamically stable; at 300 K where the delta phase can only be maintained in a metastable state with minor additions of gallium or aluminum; and at 180 K where plutonium should transform to the alpha phase. It is found in all three cases that the atomic structure within the cascade evolves through a glass-like state. At 600 K, this structure recovers very slowly; at 300 K it persist up to 2 ns with no discernable trend to recover eventually; and at 180 K the amorphous structure initiated by the collision cascade spreads through the entire crystal and converts it to a glass-like structure.


Molecular dynamics Radiation damage Plutonium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacquemin, J., Lallement, R.: Length change of α, β and δ-Pu at 1.4 K and 4.2 K. In: Miner W. N. Proc. 4th Inter. Conf. on Plutonium and other Actinides. Met. Soc. AIME, N.Y., p. 617 (1970)Google Scholar
  2. 2.
    Marples, J.A.C., Hough, A., Mortimer, M.J., Smith, A., Lee, J.A.: Length changes in the actinide metals due to self-irradiation damage at 4 K. In: Miner, W.N. (ed.) Proc. 4th Inter. Conf. on Plutonium and other Actinides. Met. Soc. AIME, N.Y., p. 623. (1970)Google Scholar
  3. 3.
    Wolfer W.G. (2000). Los Alamos Science 26: 274 Google Scholar
  4. 4.
    Thompson, M.W.: Defects and Radiation Damage in Metals. Cambridge Univ. Press, chapter 6 (1969)Google Scholar
  5. 5.
    Pochet P. (2003). Modeling of aging in plutonium by molecular dynamics. Nucl. Inst. Meth. Phys. Res. B 207: 82 CrossRefGoogle Scholar
  6. 6.
    Daw M.S., Foiles S.M. and Baskes M.I. (1993). The embedded-atom method—A review of theory and applications. Mat. Sci. Rep. 9: 251 CrossRefGoogle Scholar
  7. 7.
    Baskes M.I. (2000). Atomistic model of plutonium. Phys. Rev. B 62: 15532 CrossRefGoogle Scholar
  8. 8.
    Moriarty J.A. (1994). Angular forces and melting in bcc transition-metals—A Case-Study of Molybdenum. Phys. Rev. B 49: 12431 CrossRefGoogle Scholar
  9. 9.
    Cherne F.J., Baskes M.I. and Holian B.L. (2003). Predicted transport properties of liquid plutonium. Phys. Rev. B 67: 092104 CrossRefGoogle Scholar
  10. 10.
    Valone S.M., Baskes M.I., Stan M., Mitchell T.E., Lawson A.C. and Sickafus K.E. (2004). Simulation of low energy cascades in fcc Pu metal at 300 K and constant volume. J. Nucl. Mater. 324: 41 CrossRefGoogle Scholar
  11. 11.
    Gao F., Bacon D.J., Flewitt P.E.J. and Lewis T.A. (1998). The effects of electron-phonon coupling on defect production by displacement cascades in alpha-iron. Model. Sim. Mat. Sci. Eng. 6: 543 CrossRefGoogle Scholar
  12. 12.
    Averback R.S. and Diazdela Rubia T. (1998). Displacement damage in irradiated metals and semiconductors. Sol. State Phys. 51: 281 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Alison Kubota
    • 1
  • Wilhelm G. Wolfer
    • 1
  • Steven M. Valone
    • 2
  • Michael I. Baskes
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations