Journal of Computer-Aided Materials Design

, Volume 14, Issue 1, pp 109–117 | Cite as

Mechanism of heat transport in nanofluids

  • Manju Prakash
  • E. P. Giannelis
Original Paper


We have calculated thermal conductivity of alumina nanofluids (with water and ethylene glycol as base fluids) using temperature as well as concentration-dependent viscosity, η. The temperature profile of η is obtained using Gaussian fit to the available experimental data. In the model, the interfacial resistance effects are incorporated through a phenomenological parameter α. The micro-convection of the alumina nanoparticle (diameter less than 100 nm) is included through Reynolds and Prandtl numbers. The model is further improved by explicitly incorporating the thermal conductivity of the nanolayer surrounding the nanoparticles. Using this improved model, thermal conductivity of copper nanofluid is calculated. These calculations capture the particle concentration-dependent thermal conductivity and predict the dependence of the thermal conductivity on the size of the nanoparticle. These studies are significant to understand the underlying processes of heat transport in nanofluids and are crucial to design superior coolants of next generation.


Nanofluid Nanoparticles Thermal conductivity Brownian motion Interfacial resistance Nanolayer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Singer, D.A., Wang H.P. (eds.), Fluids, FED-vol. 231/MD-vol. 66, pp. 99-105. ASME, New York (1995)Google Scholar
  2. 2.
    Klimontovich Y.L. (1995). Statistical Theory of Open Systems: Unified Approach to Kinetic Description of Processes in Active Systems vol. 1. Kluwer Academic Publications, London Google Scholar
  3. 3.
    Xuan Y., Li Q. and Hu W. (2003). Aggregation structure and thermal conductivity of nanofluids. AlChE J. 49: 1038–1043 Google Scholar
  4. 4.
    Jang S.P. and Choi S.U.S. (2004). Role of Brownian motion in the enhanced thermal conductivity. App. Phys. Lett. 84: 4316–4318 CrossRefGoogle Scholar
  5. 5.
    Eastman J.A., Choi S.U.S., Li S., Yu W. and Thompson L.J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. App. Phys. Lett. 78: 718–720 CrossRefGoogle Scholar
  6. 6.
    Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E. and Grulke E. (2001). App. Phys. Lett. 79: 2252 CrossRefGoogle Scholar
  7. 7.
    Maxwell J.C. (1873). Electricity and Magnetism. Clarendon Press, Oxford, UK Google Scholar
  8. 8.
    Das S.K., Putra N., Thiesen P. and Roetzel W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125: 567–574 CrossRefGoogle Scholar
  9. 9.
    Keblinski P., Phillpot S.R., Choi S.U.S. and Eastman J.A. (2002). Mechanism of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45: 855–863 CrossRefGoogle Scholar
  10. 10.
    Evans W., Fish J. and Keblinski P. (2006). Role of Brownian motion hydrodynamics in nanofluid thermal conductivity. App. Phys. Lett. 88: 093116-3 Google Scholar
  11. 11.
    Koo J. and Kleinstreuer C.J. (2005). A new thermal conductivity model for nanofluids. Nanopart. Res. 6: 577–588 CrossRefGoogle Scholar
  12. 12.
    Hong T.-K., Yang Hi.-S. and Choi C.J. (2005). Study of the enhanced thermal conductivity of Fe nanofluids. J. App. Phys. 97: 064311-4 Google Scholar
  13. 13.
    Eastman J.A., Phillpot S.R., Choi S.U.S. and Keblinski P. (2004). Thermal transport in nanofluids. Ann. Rev. Mater. Res. 34: 219–246 CrossRefGoogle Scholar
  14. 14.
    Prasher R., Bhattacharya P. and Phelan P.E. (2005). Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94: 025901-4 CrossRefGoogle Scholar
  15. 15.
    Barrat J. and Chiaruttini F. (2003). Kapitza resistance at liquid-solid interface. Mol. Phys. 101: 1605–1609 CrossRefGoogle Scholar
  16. 16.
    Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris C.H., Merlin H.J. and Phillpot S.R. (2003). Nanoscale thermal transport. J. App. Phys. 93: 793 CrossRefGoogle Scholar
  17. 17.
    Xie H., Fujii M. and Zhang X. (2005). Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass transf. 48: 2926 Google Scholar
  18. 18.
    Yu W. and Choi S.U.S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids, a renovated Maxwell model. J. Nanopart. Res. 5: 16–171 CrossRefGoogle Scholar
  19. 19.
    Buongiorno J. (2006). Convective transport in nanofluids. J. Heat transf. 128: 240–250 CrossRefGoogle Scholar
  20. 20.
    Hamilton R.L. and Crosser O.K. (1962). Thermal conductivity of heterogeneous two-component systems.. I & EC Fundamentals 1: 187–191 CrossRefGoogle Scholar
  21. 21.
    Xue Q.-Z. (2003). Model for effective conductivity of nanofluids. Phys. Lett. A 307: 313–317 CrossRefGoogle Scholar
  22. 22.
    Kampmeyer P.M. (1952). The temperature dependence of viscosity for water and mercury. J. App. Phys. 23: 99–105 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Materials Science and Engineering DepartmentCornell UniversityIthacaUSA

Personalised recommendations