Journal of Computer-Aided Materials Design

, Volume 12, Issue 1, pp 17–34 | Cite as

Feature Activated Molecular Dynamics: Parallelization and Application to Systems with Globally Varying Mechanical Fields

  • Manish Prasad
  • Talid Sinno


A recently developed hybrid molecular dynamics method (Feature Activated Molecular Dynamics, or FAMD), which was originally designed to extend the scope of certain types of molecular dynamics simulations, is extended here in two ways. First, the method is modified to execute on parallel computer architectures using the MPI communication interface. The parallel FAMD algorithm is demonstrated to be computationally efficient and to substantially increase the length scales accessible with molecular dynamics. The performance of the parallel algorithm is demonstrated using a crystalline system containing 1× 106 atoms, in which 1000 supersaturated self-interstitials are introduced and allowed to aggregate for about 4 ns. In the second part of this paper, the FAMD method is applied to problems in which spatio-temporally varying stress fields are present throughout the simulation cell. In particular, we consider the evolution of a spherical void in a hydrostatically stressed silicon crystal and show that the method can capture the extremely rapid void cavitation dynamics following material failure. Once again, the FAMD approach is demonstrated to provide substantial computational advantages over standard molecular dynamics.


cavitation crystalline silicon message-passing interface molecular dynamics multiresolution methods parallel computing point defect aggregation voids 


  1. 1.
    Prasad, M., Sinno, T. 2004J. Chem. Phys1218699CrossRefPubMedGoogle Scholar
  2. 2.
    Prasad, M., Sinno, T. 2002Appl. Phys. Lett801951CrossRefGoogle Scholar
  3. 3.
    Nakamura, K., Saishuoji, T., Kubota, T., Tanimura, T. 1996Mat. Sci Eng, B3622Google Scholar
  4. 4.
    Blackstock, J.J., Ackland, G.J. 2001Philos. Mag. A812127CrossRefGoogle Scholar
  5. 5.
    Prasad, M., Sinno, T. 2003Phys. Rev. B68045206CrossRefGoogle Scholar
  6. 6.
    Prasad, M., Sinno, T. 2003Phys. Rev. B68045207CrossRefGoogle Scholar
  7. 7.
    Fichthorn, K.A., Weinberg, W.H. 1991J. Chem. Phys951090CrossRefGoogle Scholar
  8. 8.
    LaMagna, A., Coffa, S. 2000Comput. Mat. Sci1721CrossRefGoogle Scholar
  9. 9.
    Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.-J., Poate, J.M. 1998Mater. Res. Soc. Proc56843Google Scholar
  10. 10.
    Battaile, C.C., Srolovitz, D.J., Butler, J.E. 1997J. Appl. Phys826293CrossRefGoogle Scholar
  11. 11.
    Voter, A.F. 1997J. Chem. Phys1064665CrossRefGoogle Scholar
  12. 12.
    Voter, A.F. 1997Phys. Rev. Lett783908CrossRefGoogle Scholar
  13. 13.
    Sørensen, M.R., Voter, A.F. 2000J. Chem. Phys1129599CrossRefGoogle Scholar
  14. 14.
    Tabmor, E.B., Ortiz, M., Phillips, R. 1996Philos. Mag. A731529Google Scholar
  15. 15.
    Broughton, J.Q., Abraham, F.F., Bernstein, N., Kaxiras, E. 1999Phys. Rev. B602391CrossRefGoogle Scholar
  16. 16.
    Rudd, R.E., Broughton, J.Q. 2000Phys. Stat. Sol. B217251CrossRefGoogle Scholar
  17. 17.
    Prasad M., Ph.D. Thesis, University of Pennsylvania (2004)Google Scholar
  18. 18.
    Plimpton, S. 1995J. Comp. Phys1171CrossRefGoogle Scholar
  19. 19.
    Heffelfinger, G.S. 2000Comput. Phys. Commun128219CrossRefGoogle Scholar
  20. 20.
    Stillinger, F.H. 1963J. Chem. Phys381486CrossRefGoogle Scholar
  21. 21.
    Allen, M.P., Tildesley, D.J. 1987Computer Simulations of LiquidsClarendon PressOxford, UKGoogle Scholar
  22. 22.
    Frenkel, D., Smit, B. 1996Understanding Molecular SimulationAcademic PressSan Diego, USAGoogle Scholar
  23. 23.
    Bazant, M.Z., Kaxiras, E., Justo, J.F. 1997Phys. Rev. B568542CrossRefGoogle Scholar
  24. 24.
    Justo, J.F., Bazant, M.Z., Kaxiras, E., Bulatov, V.V., Yip, S. 1998Phys. Rev. B582359CrossRefGoogle Scholar
  25. 25.
    Tersoff, J., Phys. Rev. B 37 (1988) 6991; 38 (1988) 9902Google Scholar
  26. 26.
    Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F., DiNola, A, Haak, J.R. 1984J. Chem. Phys813684CrossRefGoogle Scholar
  27. 27.
    Caturla, M.J., Diazdela Rubia, T., Gilmer, G.H. 1995Nucl Instr. Meth. Phys. Res. B1061Google Scholar
  28. 28.
    Kapur, S.S., Prasad, M., Sinno, T. 2004Phys. Rev. B69155214CrossRefGoogle Scholar
  29. 29.
    Hung, C.-Y., Marshall, A.F., Kim, D.-K., Nix, W.D., Harris, J.S.,Jr., Kiehl, R.A. 1999J. Nanoparticle Res1329CrossRefGoogle Scholar
  30. 30.
    Davision, L.Grady, D.E.Shahinpoor, M. eds. 1986High-Pressure Shock Compression of Solids: Dynamic Fracture and FragmentationSpringer-VerlagNew York, USAGoogle Scholar
  31. 31.
    Marian, J., Knap, J., Ortiz, M. 2004Phys. Rev. Lett93165503CrossRefPubMedGoogle Scholar
  32. 32.
    Rudd, R.E., Belak, J.F. 2002Comput. Mater. Sci24148CrossRefGoogle Scholar
  33. 33.
    Belak, J. 1998J. Comput.-Aided Mater5193CrossRefGoogle Scholar
  34. 34.
    Khantha, M., Pope, D.P., Vitek, V. 1994Phys. Rev. Lett73684CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations