Skip to main content
Log in

Feature Activated Molecular Dynamics: Parallelization and Application to Systems with Globally Varying Mechanical Fields

  • Published:
Journal of Computer-Aided Materials Design

Abstract

A recently developed hybrid molecular dynamics method (Feature Activated Molecular Dynamics, or FAMD), which was originally designed to extend the scope of certain types of molecular dynamics simulations, is extended here in two ways. First, the method is modified to execute on parallel computer architectures using the MPI communication interface. The parallel FAMD algorithm is demonstrated to be computationally efficient and to substantially increase the length scales accessible with molecular dynamics. The performance of the parallel algorithm is demonstrated using a crystalline system containing 1× 106 atoms, in which 1000 supersaturated self-interstitials are introduced and allowed to aggregate for about 4 ns. In the second part of this paper, the FAMD method is applied to problems in which spatio-temporally varying stress fields are present throughout the simulation cell. In particular, we consider the evolution of a spherical void in a hydrostatically stressed silicon crystal and show that the method can capture the extremely rapid void cavitation dynamics following material failure. Once again, the FAMD approach is demonstrated to provide substantial computational advantages over standard molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Prasad T. Sinno (2004) J. Chem. Phys 121 8699 Occurrence Handle10.1063/1.1804171 Occurrence Handle15527333

    Article  PubMed  Google Scholar 

  2. M. Prasad T. Sinno (2002) Appl. Phys. Lett 80 1951 Occurrence Handle10.1063/1.1461050

    Article  Google Scholar 

  3. K. Nakamura T. Saishuoji T. Kubota T. Tanimura (1996) Mat. Sci Eng, B 36 22

    Google Scholar 

  4. J.J. Blackstock G.J. Ackland (2001) Philos. Mag. A 81 2127 Occurrence Handle10.1080/01418610010029539

    Article  Google Scholar 

  5. M. Prasad T. Sinno (2003) Phys. Rev. B 68 045206 Occurrence Handle10.1103/PhysRevB.68.045206

    Article  Google Scholar 

  6. M. Prasad T. Sinno (2003) Phys. Rev. B 68 045207 Occurrence Handle10.1103/PhysRevB.68.045207

    Article  Google Scholar 

  7. K.A. Fichthorn W.H. Weinberg (1991) J. Chem. Phys 95 1090 Occurrence Handle10.1063/1.461138

    Article  Google Scholar 

  8. A. LaMagna S. Coffa (2000) Comput. Mat. Sci 17 21 Occurrence Handle10.1016/S0927-0256(99)00085-3

    Article  Google Scholar 

  9. M. Jaraiz L. Pelaz E. Rubio J. Barbolla G.H. Gilmer D.J. Eaglesham H.-J. Gossmann J.M. Poate (1998) Mater. Res. Soc. Proc 568 43

    Google Scholar 

  10. C.C. Battaile D.J. Srolovitz J.E. Butler (1997) J. Appl. Phys 82 6293 Occurrence Handle10.1063/1.366532

    Article  Google Scholar 

  11. A.F. Voter (1997) J. Chem. Phys 106 4665 Occurrence Handle10.1063/1.473503

    Article  Google Scholar 

  12. A.F. Voter (1997) Phys. Rev. Lett 78 3908 Occurrence Handle10.1103/PhysRevLett.78.3908

    Article  Google Scholar 

  13. M.R. Sørensen A.F. Voter (2000) J. Chem. Phys 112 9599 Occurrence Handle10.1063/1.481576

    Article  Google Scholar 

  14. E.B. Tabmor M. Ortiz R. Phillips (1996) Philos. Mag. A 73 1529

    Google Scholar 

  15. J.Q. Broughton F.F. Abraham N. Bernstein E. Kaxiras (1999) Phys. Rev. B 60 2391 Occurrence Handle10.1103/PhysRevB.60.2391

    Article  Google Scholar 

  16. R.E. Rudd J.Q. Broughton (2000) Phys. Stat. Sol. B 217 251 Occurrence Handle10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A

    Article  Google Scholar 

  17. Prasad M., Ph.D. Thesis, University of Pennsylvania (2004)

  18. S. Plimpton (1995) J. Comp. Phys 117 1 Occurrence Handle10.1006/jcph.1995.1039

    Article  Google Scholar 

  19. G.S. Heffelfinger (2000) Comput. Phys. Commun 128 219 Occurrence Handle10.1016/S0010-4655(00)00050-3

    Article  Google Scholar 

  20. F.H. Stillinger (1963) J. Chem. Phys 38 1486 Occurrence Handle10.1063/1.1776907

    Article  Google Scholar 

  21. M.P. Allen D.J. Tildesley (1987) Computer Simulations of Liquids Clarendon Press Oxford, UK

    Google Scholar 

  22. D. Frenkel B. Smit (1996) Understanding Molecular Simulation Academic Press San Diego, USA

    Google Scholar 

  23. M.Z. Bazant E. Kaxiras J.F. Justo (1997) Phys. Rev. B 56 8542 Occurrence Handle10.1103/PhysRevB.56.8542

    Article  Google Scholar 

  24. J.F. Justo M.Z. Bazant E. Kaxiras V.V. Bulatov S. Yip (1998) Phys. Rev. B 58 2359 Occurrence Handle10.1103/PhysRevB.58.2539

    Article  Google Scholar 

  25. Tersoff, J., Phys. Rev. B 37 (1988) 6991; 38 (1988) 9902

    Google Scholar 

  26. H.J.C. Berendsen J.P.M. Postma W.F. Gunsteren Particlevan A DiNola J.R. Haak (1984) J. Chem. Phys 81 3684 Occurrence Handle10.1063/1.448118

    Article  Google Scholar 

  27. M.J. Caturla T. Diazdela Rubia G.H. Gilmer (1995) Nucl Instr. Meth. Phys. Res. B 106 1

    Google Scholar 

  28. S.S. Kapur M. Prasad T. Sinno (2004) Phys. Rev. B 69 155214 Occurrence Handle10.1103/PhysRevB.69.155214

    Article  Google Scholar 

  29. C.-Y. Hung A.F. Marshall D.-K. Kim W.D. Nix J.S. Harris SuffixJr. R.A. Kiehl (1999) J. Nanoparticle Res 1 329 Occurrence Handle10.1023/A:1010052731395

    Article  Google Scholar 

  30. L. Davision D.E. Grady M. Shahinpoor (Eds) (1986) High-Pressure Shock Compression of Solids: Dynamic Fracture and Fragmentation Springer-Verlag New York, USA

    Google Scholar 

  31. J. Marian J. Knap M. Ortiz (2004) Phys. Rev. Lett 93 165503 Occurrence Handle10.1103/PhysRevLett.93.165503 Occurrence Handle15525002

    Article  PubMed  Google Scholar 

  32. R.E. Rudd J.F. Belak (2002) Comput. Mater. Sci 24 148 Occurrence Handle10.1016/S0927-0256(02)00181-7

    Article  Google Scholar 

  33. J. Belak (1998) J. Comput.-Aided Mater 5 193 Occurrence Handle10.1023/A:1008685029849

    Article  Google Scholar 

  34. M. Khantha D.P. Pope V. Vitek (1994) Phys. Rev. Lett 73 684 Occurrence Handle10.1103/PhysRevLett.73.684 Occurrence Handle10057511

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talid Sinno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M., Sinno, T. Feature Activated Molecular Dynamics: Parallelization and Application to Systems with Globally Varying Mechanical Fields. J Computer-Aided Mater Des 12, 17–34 (2005). https://doi.org/10.1007/s10820-005-0697-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-005-0697-4

Keywords

Navigation