Advertisement

Journal of Bioeconomics

, Volume 20, Issue 1, pp 125–140 | Cite as

Experimental evolution of color preference for oviposition in Drosophila melanogaster

  • Mellissa Marcus
  • Terence C. Burnham
  • David W. Stephens
  • Aimee S. Dunlap
Article

Abstract

Preferences are the foundation of economics. Preferences are taken by economists as fixed by some implicitly biological process. In recent decades, behavioral economics has documented the divergence between the nature of human preferences and the assumptions of standard economics. In this study, we use the tool of experimental evolution to study the evolution of color preferences in fruit flies (Drosophila melanogaster). In particular, we select for a preference for laying eggs on the color aqua. We find that the flies evolve to lay more than twice as many eggs on aqua. However, this evolution occurs entirely because the flies lay more eggs overall. The flies in this study, do not evolve to lay a higher percentage of eggs on the selected color, aqua.

Keywords

Adaptation Preference theory Experimental evolution Evolution Behavioral economics selection 

Notes

Acknowledgements

Authors would like to thank Ulrich Witt, Editor of the Journal of Bioeconomics who ran the review process for this paper, and two anonymous reviewers, for their excellent comments. We also thank Pamela Tocco, Toni Walker, the students of the Dunlap Lab, and the extended Marcus-Yoakum family. In addition, we would like to thank Itachi Mills for working on an independent verification of the preference and fecundity effects. The work was supported, in part, by NSF Grant: IOS-1021183

References

  1. Abed-Vieillard, D., Cortot, J., Everaerts C., & Ferveur J. F. (2013). Choice alters Drosophila oviposition site preference on menthol. Biology Open.  https://doi.org/10.1242/bio.20136973.
  2. Brembs, B., & de Ibarra, N. H. (2006). Different parameters support generalization and discrimination learning in Drosophila at the flight simulator. Learning & Memory, 13(5), 629–637.CrossRefGoogle Scholar
  3. Brennan, T. J., & Lo, A. W. (2011). The origin of behavior. Quarterly Journal of Finance, 01(01), 55–108.CrossRefGoogle Scholar
  4. Burke, M. K., Dunham, J. P., Shahrestani, P., Thornton, K. R., Rose, M. R., & Long, A. D. (2010). Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 467(7315), 587–590.CrossRefGoogle Scholar
  5. Burnham, T. C., Dunlap, A., & Stephens, D. W. (2015). Experimental evolution and economics. SAGE Open, 5(4), 1–17.CrossRefGoogle Scholar
  6. Carfagna, M., & Lancieri, M. (1971). Colour vision and the choice of substrate during oviposition in Drosophila melanogaster Meig. Monitore Zoologico Italiano-Italian Journal of Zoology, 5(4), 215–222.Google Scholar
  7. Collins, J., Baer, B., & Weber, E. J. (2016). Evolutionary biology in economics: A review. Economic Record, 92(297), 291–312.CrossRefGoogle Scholar
  8. Del Solar, E., Guijón, A. M., & Walker, L. (1974). Choice of colored substrates for oviposition in Drosophila melanogaster. Italian Journal of Zoology, 41(3), 253–260.Google Scholar
  9. Del Solar, E., & Ruiz, G. (1979). Behaviour changes in Drosophila melanogaster in the choice of colored substrates for oviposition. Italian Journal of Zoology, 46(1–2), 17–22.Google Scholar
  10. Dulai, K. S., von Dornum, M., Mollon, J. D., & Hunt, D. M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research, 9(7), 629–638.Google Scholar
  11. Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences, 111(32), 11750–11755.CrossRefGoogle Scholar
  12. Dweck, H. K., Ebrahim, S. A., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B. S., Stensmyr, M. C. (2013). Olfactory preference for egg laying on citrus substrates in Drosophila. Current Biology, 23(24), 2472–2480.Google Scholar
  13. Erclik, T., Hartenstein, V., McInnes, R. R., & Lipshitz, H. D. (2009). Eye evolution at high resolution: The neuron as a unit of homology. Developmental Biology, 332(1), 70–79.CrossRefGoogle Scholar
  14. Foucaud, J., Moreno, C., Pascual, M., Rezende, E. L., Castaneda, L. E., Gibert, P., Mery, F. (2016). Introduced Drosophila subobscura populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability. Ecology and Evolution, 6(6), 1725–1736.Google Scholar
  15. Fox, C. W., & Rauter, C. M. (2003). Bet-hedging and the evolution of multiple mating. Evolutionary Ecology Research, 5(2), 273–286.Google Scholar
  16. Frentiu, F. D., Bernard, G. D., Sison-Mangus, M. P., Van Zandt Brower, A., & Briscoe, A. D. (2007). Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Molecular Biology and Evolution, 24(9), 2016–2028.CrossRefGoogle Scholar
  17. Gonzalez-Bellido, P. T., Wardill, T. J., & Juusola, M. (2011). Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proceedings of the National Academy of Sciences, 108(10), 4224–4229.CrossRefGoogle Scholar
  18. Hansson, I., & Stuart, C. (1990). Malthusian selection of preferences. American Economic Review, 80(3), 529–544.Google Scholar
  19. Hansson, I., & Stuart, C. (1992). Socialization and altruism. Journal of Evolutionary Economics, 2(4), 301–312.CrossRefGoogle Scholar
  20. Harzsch, S., Melzer, R. R., & Müller, C. H. (2007). Mechanisms of eye development and evolution of the arthropod visual system: The lateral eyes of Myriapoda are not modified insect ommatidia. Organisms Diversity & Evolution, 7(1), 20–32.CrossRefGoogle Scholar
  21. Heisenberg, M., & Wolf, R. (2013). Vision in Drosophila: Genetics of microbehavior. New York: Springer.Google Scholar
  22. Joseph, R. M., Devineni, A. V., King, I. F., & Heberlein, U. (2009). Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proceedings of the National Academy of Sciences, 106(27), 11352–11357.CrossRefGoogle Scholar
  23. Kahneman, D., Knetsch, J., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5(1), 193–206.CrossRefGoogle Scholar
  24. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.CrossRefGoogle Scholar
  25. Kozmik, Z. (2008). The role of Pax genes in eye evolution. Brain Research Bulletin, 75(2), 335–339.CrossRefGoogle Scholar
  26. Mery, F., & Kawecki, T. J. (2002). Experimental evolution of learning ability in fruit flies. Proceedings of the National Academy of Sciences, 99(22), 14274–14279.CrossRefGoogle Scholar
  27. Miller, P. M., Saltz, J. B., Cochrane, V. A., Marcinkowski, C. M., Mobin, R., & Turner, T. L. (2011). Natural variation in decision-making behavior in Drosophila melanogaster. PLoS ONE, 6(1), e16436.CrossRefGoogle Scholar
  28. Panchanathan, K., & Boyd, R. (2003). A tale of two defectors: The importance of standing for evolution of indirect reciprocity. Journal of Theoretical Biology, 224(1), 115–126.CrossRefGoogle Scholar
  29. Peterson, K. J., & Eernisse, D. J. (2016). The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. Organisms Diversity & Evolution, 16(2), 401–418.CrossRefGoogle Scholar
  30. Robson, A. (1994). The evolution of attitudes to risk: Lottery tickets and relative wealth. Mimeo: University of Western Ontario.Google Scholar
  31. Robson, A. J., Szentes, B., & Iantchev, E. (2012). The evolutionary basis of time preference: Intergenerational transfers and sex. American Economic Journal: Microeconomics, 4(4), 172–201.Google Scholar
  32. Rogers, A. R. (1994). Evolution of time preference by natural selection. American Economic Review, 84(3), 460–481.Google Scholar
  33. Rose, M. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–1010.CrossRefGoogle Scholar
  34. Rubin, P. H., & Paul, C. W. (1979). An evolutionary model of tastes for risk. Economic Inquiry, 17(4), 585–596.CrossRefGoogle Scholar
  35. Salcedo, E., Huber, A., Henrich, S., Chadwell, L. V., Chou, W.-H., Paulsen, R., Britt, S. G. (1999). Blue-and green-absorbing visual pigments of Drosophila: Ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. Journal of Neuroscience, 19(24), 10716–10726.Google Scholar
  36. Salomon, C. H., & Spatz, H.-C. (1983). Colour vision in Drosophila melanogaster: Wavelength discrimination. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 150(1), 31–37.CrossRefGoogle Scholar
  37. Schnaitmann, C., Garbers, C., Wachtler, T., & Tanimoto, H. (2013). Color discrimination with broadband photoreceptors. Current Biology, 23(23), 2375–2382.CrossRefGoogle Scholar
  38. Stigler, G. J., & Becker, G. S. (1977). De Gustibus Non Est Disputam. The American Economic Review, 67(2), 76–90.Google Scholar
  39. Suzuki, T., Takayama, R., & Sato, M. (2016). Eyeless/Pax6 controls the production of glial cells in the visual center of Drosophila melanogaster. Developmental Biology, 409(2), 343–353.CrossRefGoogle Scholar
  40. Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.CrossRefGoogle Scholar
  41. Washington, C. G. (2010). Color vision in Drosophila melanogaster. New York: Columbia University.Google Scholar
  42. Yang, C.-H., Belawat, P., Hafen, E., Jan, L. Y., & Jan, Y.-N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science, 319(5870), 1679–1683.CrossRefGoogle Scholar
  43. Zhang, J. (2003). Evolution by gene duplication: An update. Trends in Ecology & Evolution, 18(6), 292–298.CrossRefGoogle Scholar
  44. Zhu, J., Palliyil, S., Ran, C., & Kumar, J. P. (2017). Drosophila Pax6 promotes development of the entire eye-antennal disc, thereby ensuring proper adult head formation. Proceedings of the National Academy of Sciences, 114(23), 5846–5853.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mellissa Marcus
    • 1
  • Terence C. Burnham
    • 2
  • David W. Stephens
    • 3
  • Aimee S. Dunlap
    • 1
  1. 1.Department of BiologyUniversity of Missouri, St. LouisSt. LouisUSA
  2. 2.Argyros School of Business and EconomicsChapman UniversityOrangeUSA
  3. 3.College of Biological Sciences, University of Minnesota, Twin CitiesMinneapolisUSA

Personalised recommendations