Skip to main content
Log in

Do Uncharred Plants Preserve Original Carbon and Nitrogen Isotope Compositions?

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

The isotopic compositions of plants can provide significant insights into paleodiets, ancient agricultural activities, and past environments. Isotopic compositions of charred (aka carbonized) ancient plant remains are typically preferred over those of uncharred/uncarbonized plants, both because charred plants are more commonly preserved and because early research suggested they experience less post-depositional isotopic alteration. In this paper, we re-explore the question of whether uncharred plants experience large-magnitude post-depositional changes in carbon and nitrogen isotope compositions by analyzing Terminal Pleistocene–Early Holocene plant specimens from rockshelters in the Escalante River Basin (Colorado Plateau, southeastern Utah). Several lines of evidence, including C3-CAM differences, plant-part comparisons, and dietary estimates from ancient herbivore collagen, suggest that the original carbon isotope compositions of these plants have not been significantly altered. The preservation status of plant nitrogen isotope compositions is equivocal. The direction of temporal shifts in plant δ15N matches global trends and the magnitude of the shift may have been exacerbated by the extinction of megafauna in an arid environment. However, the Pleistocene plant δ15N values are higher than would be expected based on herbivore bone collagen δ15N. Nevertheless, in contrast to previous research, the ancient uncharred plants in this study did not have exceptionally high δ15N values (> + 25‰). Overall, our research suggests that uncharred plants could be useful substrates for isotopic paleodietary and/or paleoenvironmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agenbroad, L. D., Mead, J. I., Mead, E. M., & Elder, D. (1989). Archaeology, alluvium, and cave stratigraphy: the record from Bechan cave, Utah. Kiva, 54, 335–351.

    Google Scholar 

  • Aguilera, M., Araus, J. L., Voltas, J., Rodriguez-Ariza, M. O., Molina, F., Rovira, N., Buxo, R., & Ferrio, J. P. (2008). Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture. Rapid Communications in Mass Spectrometry, 22, 1653–1663.

    Google Scholar 

  • Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17, 431–451.

    Google Scholar 

  • Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., & Baisden, W. T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17, 1031. https://doi.org/10.1029/2002GB001903.

    Google Scholar 

  • Anderson, R. S., Betancourt, J. L., Mead, J. I., Hevly, R. H., & Adam, D. P. (2000). Middle- and Late-Wisconsin paleobotanic and paleoclimatic records from the southern Colorado Plateau, USA. Palaeogeography Palaeoclimatology Palaeoecology, 155, 31–57.

    Google Scholar 

  • Araus, J. L., Febrero, A., Buxó, R., Rodrı́guez-Ariza, M. O., Molina, F., Camalich, M.a. D., Martı́n, D., & Voltas, J. (1997). Identification of ancient irrigation practices based on the carbon isotope discrimination of plant seeds: a case study from the South-East Iberian Peninsula. Journal of Archaeological Science, 24, 729–740.

  • Austin, A. T., & Vitousek, P. M. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia, 113, 519–529.

    Google Scholar 

  • Badeck, F. W., Tcherkez, G., Nogues, S., Piel, C., & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Communications in Mass Spectrometry, 19, 1381–1391.

    Google Scholar 

  • Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., Hughes, C., Lasch, P., Martin-Hirsch, P. L., Obinaju, B., Sockalingum, G. D., Sulé-Suso, J., Strong, R. J., Walsh, M. J., Wood, B. R., Gardner, P., & Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9, 1771–1791.

    Google Scholar 

  • Benner, R., Fogel, M. L., & Sprague, E. K. (1991). Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnology and Oceanography, 36, 1358–1374.

    Google Scholar 

  • Bland, H.A., van Bergen, P.F., Carter, J.F., & Evershed, R.P. (1998). Early diagenetic transformations of proteins and polysaccharides in archaeological plant remains. Nitrogen-Containing Macromolecules in the Bio- and Geosphere, American Chemical Society, pp. 113–131.

  • Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J., & Zazula, G. D. (2011). Pleistocene graminoid-dominated ecosystems in the Arctic. Quaternary Science Reviews, 30, 2906–2929.

    Google Scholar 

  • Bocherens, H., Grandal-d'Anglade, A., & Hobson, K. A. (2014). Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus). Isotopes in Environmental and Health Studies, 50, 291–299.

    Google Scholar 

  • Bogaard, A., Heaton, T. H. E., Poulton, P., & Merbach, I. (2007). The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34, 335–343.

    Google Scholar 

  • Bogaard, A., Fraser, R., Heaton, T. H. E., Wallace, M., Vaiglova, P., Charles, M., Jones, G., Evershed, R. P., Styring, A. K., Andersen, N. H., Arbogast, R. M., Bartosiewic, L., Gardeisen, A., Kanstrup, M., Maier, U., Marinova, E., Ninov, L., Schafer, M., & Stephan, E. (2013). Crop manuring and intensive land management by Europe’s first farmers. Proceedings of the National Academy of Sciences of the United States of America, 110, 12589–12594.

    Google Scholar 

  • Boström, B., Comstedt, D., & Ekblad, A. (2007). Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia, 153, 89–98.

    Google Scholar 

  • Brueggemann, N., Gessler, A., Kayler, Z., Keel, S. G., Badeck, F., Barthel, M., Boeckx, P., Buchmann, N., Brugnoli, E., Esperschuetz, J., Gavrichkova, O., Ghashghaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., & Bahn, M. (2011). Carbon allocation and carbon isotope fluxes in the plant–soil–atmosphere continuum: a review. Biogeosciences, 8, 3457–3489.

    Google Scholar 

  • Casey, M. M., & Post, D. M. (2011). The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth Science Reviews, 106, 131–148.

    Google Scholar 

  • Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46, 443–453.

    Google Scholar 

  • Cerling, T. E., Harris, J. M., & Leakey, M. G. (1999). Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia, 120, 364–374.

    Google Scholar 

  • Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.

    Google Scholar 

  • Cerling, T. E., Hart, J. A., & Hart, T. B. (2004). Stable isotope ecology in the Ituri Forest. Oecologia, 138, 5–12.

    Google Scholar 

  • Cerling, T. E., Wittemyer, G., Ehleringer, J. R., Remien, C. H., & Douglas-Hamilton, I. (2009). History of animals using isotope records (HAIR): a 6-year dietary history of one family of African elephants. Proceedings of the National Academy of Sciences, 106, 8093–8100.

    Google Scholar 

  • Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S., Dawson, T. E., Griffiths, H. G., Farquhar, G. D., & Wright, I. J. (2009). Viewpoint: why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36, 199–213.

    Google Scholar 

  • Charles, M., Forster, E., Wallace, M., & Jones, G. (2015). “Nor ever lightning char thy grain” 1: establishing archaeologically relevant charring conditions and their effect on glume wheat grain morphology. STAR: Science & Technology of Archaeological Research, 1, 1–6.

    Google Scholar 

  • Choi, W. J., Lee, S. M., Ro, H. M., Kim, K. C., & Yoo, S. H. (2002). Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant and Soil, 245, 223–232.

    Google Scholar 

  • Codron, J., Codron, D., Lee-Thorp, J. A., Sponheimer, M., Bond, W. J., de Ruiter, D., & Grant, R. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science, 32, 1757–1772.

    Google Scholar 

  • Codron, D., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2006). Inter- and intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ 13C, δ 15N, and %N. American Journal of Physical Anthropology, 129, 204–214.

    Google Scholar 

  • Codron, D., Lee-Thorp, J. A., Sponheimer, M., & Codron, J. (2007). Nutritional content of savanna plant foods: implications for browser/grazer models of ungulate diversification. European Journal of Wildlife Research, 53, 100–111.

    Google Scholar 

  • Codron, J., Lee-Thorp, J. A., Sponheimer, M., & Codron, D. (2013). Plant stable isotope composition across habitat gradients in a semi-arid savanna: implications for environmental reconstruction. Journal of Quaternary Science, 28, 301–310.

    Google Scholar 

  • Connin, S. L., Feng, X., & Virginia, R. A. (2001). Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biology and Biochemistry, 33, 41–51.

    Google Scholar 

  • Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., Penuelas, J., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., Welker, J. M., & Wright, I. J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183, 980–992.

    Google Scholar 

  • Crawford, T. W., Rendig, V. V., & Broadbent, F. E. (1982). Sources, fluxes, and sinks of nitrogen during early reproductive growth of maize (Zea mays L.). Plant Physiology, 70, 1654–1660.

    Google Scholar 

  • Davis, O. K., Agenbroad, L., Martin, P. S., & Mead, J. I. (1984). The Pleistocene dung blanket of Bechan cave, Utah, USA. Carnegie Museum of Natural History Special Publication, 267–282.

  • DeNiro, M. J. (1985). Post-mortem preservation and alteration of "in vivo" bone collagen ratios: implications for paleodietary analysis. Nature, 317, 806–809.

    Google Scholar 

  • DeNiro, M. J., & Hastorf, C. A. (1985). Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: studies utilizing archaeological specimens from Peru. Geochimica et Cosmochimica Acta, 49, 97–115.

    Google Scholar 

  • Díaz, F. P., Frugone, M., Gutiérrez, R. A., & Latorre, C. (2016). Nitrogen cycling in an extreme hyperarid environment inferred from δ 15N analyses of plants, soils and herbivore diet. Scientific Reports, 6, 22226.

    Google Scholar 

  • Doughty, C. E., Wolf, A., & Malhi, Y. (2013). The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 6, 761.

    Google Scholar 

  • Doughty, C. E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E. S., Malhi, Y., Dunning, J. B., & Svenning, J.-C. (2016). Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences, 113, 868–873.

    Google Scholar 

  • Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E., & Bocherens, H. (2008). Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography Palaeoclimatology Palaeoecology, 266, 69–82.

    Google Scholar 

  • du Toit, J. T., & Owen-Smith, N. (1989). Body size, population metabolism, and habitat specialization among large African herbivores. The American Naturalist, 133, 736–740.

    Google Scholar 

  • Ehleringer, J. R., Buchmann, N., & Flanagan, L. B. (2000). Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 10, 412–422.

    Google Scholar 

  • Erskine, P. D., Bergstrom, D. M., Schmidt, S., Stewart, G. R., Tweedie, C. E., & Shaw, J. D. (1998). Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia, 117, 187–193.

    Google Scholar 

  • Evans, R. D., & Ehleringer, J. R. (1993). A break in the nitrogen cycle in aridlands? Evidence from δ 15N of soils. Oecologia, 94, 314–317.

    Google Scholar 

  • Evans, R. D., & Ehleringer, J. R. (1994). Water and nitrogen dynamics in an arid woodland. Oecologia, 99, 233–242.

    Google Scholar 

  • Evershed, R. P., Bland, H. A., van Bergen, P. F., Carter, J. F., Horton, M. C., & Rowley-Conwy, P. A. (1997). Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science, 278, 432–433.

    Google Scholar 

  • Fiorentino, G., Caracuta, V., Casiello, G., Longobardi, F., & Sacco, A. (2012). Studying ancient crop provenance: implications from δ13C and δ15N values of charred barley in a Middle Bronze Age silo at Ebla (NW Syria). Rapid Communications in Mass Spectrometry, 26, 327–335.

    Google Scholar 

  • Fiorentino, G., Ferrio, J. P., Bogaard, A., Araus, J. L., & Riehl, S. (2015). Stable isotopes in archaeobotanical research. Vegetation History and Archaeobotany, 24, 215–227.

    Google Scholar 

  • Flanagan, L. B., Cook, C. S., & Ehleringer, J. R. (1997). Unusually low carbon isotope ratios in plants from hanging gardens in southern Utah. Oecologia, 111, 481–489.

    Google Scholar 

  • Fleming, T. H., Nuñez, R. A., & Sternberg, L.d. S. L. (1993). Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia, 94, 72–75.

  • Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., Leuenberger, M., Langenfelds, R. L., Michel, E., & Steele, L. P. (1999). A 1000-year high precision record of δ 13C in atmospheric CO2. Tellus B: Chemical and Physical Meteorology, 51, 170–193.

  • Frank, D. A., & Evans, R. D. (1997). Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology, 78, 2238–2248.

    Google Scholar 

  • Frank, D. A., & Zhang, Y. M. (1997). Ammonia volatilization from a seasonally and spatially variable grazed grassland: Yellowstone National Park. Biogeochemistry, 36, 189–203.

    Google Scholar 

  • Frank, D. A., Evans, R. D., & Tracy, B. F. (2004). The role of ammonia volatilization in controlling the 15N abundance of a grazed grassland. Biogeochemistry, 68, 169–178.

    Google Scholar 

  • Fraser, R. A., Bogaard, A., Heaton, T., Charles, M., Jones, G., Christensen, B. T., Halstead, P., Merbach, I., Poulton, P. R., Sparkes, D., & Styring, A. K. (2011). Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science, 38, 2790–2804.

    Google Scholar 

  • Fraser, R. A., Bogaard, A., Charles, M., Styring, A. K., Wallace, M., Jones, G., Ditchfield, P., & Heaton, T. H. E. (2013). Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science, 40, 4754–4766.

    Google Scholar 

  • Friedli, H. H., Lotscher, H., Oescheger, U., Siegenthaler, U., & Stauffer, B. (1986). Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 324, 237–238.

    Google Scholar 

  • Ghashghaie, J., & Badeck, F. W. (2014). Opposite carbon isotope discrimination during dark respiration in leaves versus roots—a review. New Phytologist, 201, 751–769.

    Google Scholar 

  • Gill, J. L. (2014). Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist, 201, 1163–1169.

    Google Scholar 

  • Handley, L. L., Austin, A. T., Stewart, G. R., Robinson, D., Scrimgeour, C. M., Raven, J. A., Heaton, T. H. E., & Schmidt, S. (1999). The 15N natural abundance (δ 15N) of ecosystem samples reflects measures of water availability. Functional Plant Biology, 26, 185–199.

    Google Scholar 

  • Heaton, T. H. E., Jones, G., Halstead, P., & Tsipropoulos, T. (2009). Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. Journal of Archaeological Science, 36, 2224–2233.

    Google Scholar 

  • Hobbie, E. A., & Ouimette, A. P. (2009). Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry, 95, 355–371.

    Google Scholar 

  • Hobbie, E. A., & Werner, R. A. (2004). Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytologist, 161, 371–385.

    Google Scholar 

  • Hobbie, E. A., Macko, S. A., & Williams, M. (2000). Correlations between foliar δ 15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia, 122, 273–283.

    Google Scholar 

  • Hofmeister, J., Hošek, J., Bůzek, F., & Roleček, J. (2012). Foliar N concentration and δ15N signature reflect the herb layer species diversity and composition in oak-dominated forests. Applied Vegetation Science, 15, 318–328.

    Google Scholar 

  • Hogberg, P., Hogbom, L., Schinkel, H., Hogberg, M., Johannisson, C., & Wallmark, H. (1996). 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia, 108, 207–214.

    Google Scholar 

  • Kanstrup, M., Thomsen, I. K., Mikkelsen, P. H., & Christensen, B. T. (2012). Impact of charring on cereal grain characteristics: linking prehistoric manuring practice to δ15N signatures in archaeobotanical material. Journal of Archaeological Science, 39, 2533–2540.

    Google Scholar 

  • King, J. Y., Brandt, L. A., & Adair, E. C. (2012). Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry, 111, 57–81.

    Google Scholar 

  • Kluge, M., Brulfert, J., Ravelomanana, D., Lipp, J., & Ziegler, H. (1991). Crassulacean acid metabolism in Kalanchoë species collected in various climatic zones of Madagascar: a survey by δ 13C analysis. Oecologia, 88, 407–414.

    Google Scholar 

  • Knapp, A. K., Blair, J. M., Briggs, J. M., Collins, S. L., Hartnett, D. C., Johnson, L. C., & Towne, E. G. (1999). The keystone role of bison in North American tallgrass prairie. Bioscience, 49, 39–50.

    Google Scholar 

  • Koch, P., Behrensmeyer, A. K., & Fogel, M. L. (1991). The isotopic ecology of plants and animals in Amboseli National Park, Kenya. Carnegie Institution Geophysics Laboratory Annual Report, 2250, 163–171.

  • Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences, 107, 19691–19695.

    Google Scholar 

  • Kolb, K. J., & Evans, R. D. (2002). Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytologist, 156, 57–64.

    Google Scholar 

  • Kramer, M. G., Sollins, P., Sletten, R. S., & Swart, P. K. (2003). N isotope fractionation and measures of organic matter alteration during decomposition. Ecology, 84, 2021–2025.

    Google Scholar 

  • Kristensen, D. K., Kristensen, E., Forchhammer, M. C., Michelsen, A., & Schmidt, N. M. (2011). Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 89, 892–899.

    Google Scholar 

  • Kropf, M., Mead, J. I., & Anderson, R. S. (2007). Dung, diet, and the paleoenvironment of the extinct shrub-ox (Euceratherium collinum) on the Colorado Plateau, USA. Quaternary Research, 67, 143–151.

    Google Scholar 

  • Krull, E. S., Bestland, E. A., & Gates, W. P. (2016). Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ 13C, δ 15N and geochemistry. Radiocarbon, 44, 93–112.

    Google Scholar 

  • Leavitt, S. W., & Long, A. (1982). Evidence for 13C/12C fractionation between tree leaves and wood. Nature, 298, 742–744.

    Google Scholar 

  • Lee, H., Rahn, T., & Throop, H. (2011). An accounting of C-based trace gas release during abiotic plant litter degradation. Global Change Biology, 18, 1185–1195.

    Google Scholar 

  • Liu, D., Zhu, W., Wang, X., Pan, Y., Wang, C., Xi, D., Bai, E., Wang, Y., Han, X., & Fang, Y. (2017). Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200km transect. Biogeosciences, 14, 989.

    Google Scholar 

  • Long, E. S., Sweitzer, R. A., Diefenbach, D. R., & Ben-David, M. (2005). Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies. Oecologia, 146, 148–156.

    Google Scholar 

  • Makarewicz, C. A., & Sealy, J. (2015). Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science, 56, 146–158.

    Google Scholar 

  • Marino, B. D., & DeNiro, M. J. (1987). Isotopic analysis of archaeobotanicals to reconstruct past climates: effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. Journal of Archaeological Science, 14, 537–548.

    Google Scholar 

  • Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., Mcdowell, W., Robertson, G. P., Santos, O. C., & Treseder, K. (1999). Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. In A. R. Townsend (Ed.), New perspectives on nitrogen cycling in the temperate and tropical Americas: report of the international SCOPE nitrogen project (pp. 45–65). Dordrecht: Springer Netherlands.

    Google Scholar 

  • McCalley, C. K., & Sparks, J. P. (2009). Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science, 326, 837–840.

    Google Scholar 

  • McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W., & Craine, J. M. (2010). Thirteen decades of foliar isotopes indicate declining nitrogen availability in central north American grasslands. New Phytologist, 187, 1135–1145.

    Google Scholar 

  • McLauchlan, K. K., Williams, J. J., Craine, J. M., & Jeffers, E. S. (2013). Changes in global nitrogen cycling during the Holocene epoch. Nature, 495, 352.

    Google Scholar 

  • Mead, J. I., & Agenbroad, L. D. (1992). Isotope dating of Pleistocene dung deposits from the Colorado Plateau, Arizona and Utah. Radiocarbon, 34, 1–19.

    Google Scholar 

  • Medina, E., Sternberg, L., & Cuevas, E. (1991). Vertical stratification of δ 13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia, 87, 369–372.

    Google Scholar 

  • Melillo, J. M., Aber, J. D., Linkins, A. E., Ricca, A., Fry, B., & Nadelhoffer, K. J. (1989). Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil, 115, 189–198.

    Google Scholar 

  • Muzuka, A. N. N. (1999). Isotopic compositions of tropical East African flora and their potential as source indicators of organic matter in coastal marine sediments. Journal of African Earth Sciences, 28, 757–766.

    Google Scholar 

  • Nitsch, E., Charles, M., & Bogaard, A. (2015). Calculating a statistically robust δ 13C and δ 15N offset for charred cereal and pulse seeds. STAR: Science & Technology of Archaeological Research, 1, 1–8.

    Google Scholar 

  • O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567.

    Google Scholar 

  • O'Leary, M. (1988). Carbon isotopes in photosynthesis. Bioscience, 38, 328–336.

    Google Scholar 

  • Osmond, C. B., Allaway, W. G., Sutton, B. G., Troughton, J. H., Queiroz, O., Luttge, U., & Winter, K. (1973). Carbon isotope discrimination in photosynthesis of CAM plants. Nature, 246, 41–42.

    Google Scholar 

  • Owen-Smith, R. N. (1988). Megaherbivores: the influence of very large body size on ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pardo, F., Gil, L., & Pardos, J. A. (1997). Field study of beech (t Fagus sylvatica L.) and melojo oak (t Quercus pyrenaica Willd) leaf litter decomposition in the Centre of the Iberian Peninsula. Plant and Soil, 191, 89–100.

    Google Scholar 

  • Phillips, S. L., & Ehleringer, J. R. (1995). Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel's oak (Quereus gambelii Nutt). Trees, 9, 214–219.

    Google Scholar 

  • Ponsard, S., & Arditi, R. (2000). What can stable isotopes (δ 15N and δ 13C) tell about the food web of soil macro-invertebrates? Ecology, 81, 852–864.

    Google Scholar 

  • Poole, I., Braadbaart, F., Boon, J. J., & van Bergen, P. F. (2002). Stable carbon isotope changes during artificial charring of propagules. Organic Geochemistry, 33, 1675–1681.

    Google Scholar 

  • Rabanus-Wallace, M. T., Wooller, M. J., Zazula, G. D., Shute, E., Jahren, A. H., Kosintsev, P., Burns, J. A., Breen, J., Llamas, B., & Cooper, A. (2017). Megafaunal isotopes reveal role of increased moisture on rangeland during Late Pleistocene extinctions. Nature Ecology & Evolution, 1, 0125.

    Google Scholar 

  • Robinson, D. (2001). δ 15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16, 153–162.

    Google Scholar 

  • Salazar, S., Sánchez, L.-E., Galindo, P., & Santa-Regina, I. (2012). Long-term decomposition process of the leaf litter, carbon and nitrogen dynamics under different forest management in the Sierra de Francia, Salamanca, Spain. Journal of Agricultural Science and Technology, B 2, 312.

    Google Scholar 

  • Santana-Sagredo, F., Lee-Thorp, J. A., Schulting, R., & Uribe, M. (2015). Isotopic evidence for divergent diets and mobility patterns in the Atacama Desert, northern Chile, during the late intermediate period (AD 900–1450). American Journal of Physical Anthropology, 156, 374–387.

    Google Scholar 

  • Santana-Sagredo, F., Schulting, R., Lee-Thorp, J., Agüero, C., Uribe, M., & Lemp, C. (2017). Paired radiocarbon dating on human samples and camelid fibers and textiles from northern Chile: the case of pica 8 (Tarapacá). Radiocarbon, 1–19.

  • Sayed, O. H. (2001). Crassulacean acid metabolism 1975–2000, a check list. Photosynthetica, 39, 339–352.

    Google Scholar 

  • Schaeffer, S. M., & Evans, R. D. (2005). Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland. Oecologia, 145, 425–433.

    Google Scholar 

  • Scheu, S., & Falca, M. (2000). The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia, 123, 285–296.

    Google Scholar 

  • Steele, K. W., Wilson, A. T., & Saunders, W. M. H. (1981). Nitrogen isotope ratios in surface and sub-surface horizons of New Zealand improved grassland soils. New Zealand Journal of Agricultural Research, 24, 167–170.

    Google Scholar 

  • Sternberg, L. O., DeNiro, M. J., & Johnson, H. B. (1984). Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology, 74, 557–561.

    Google Scholar 

  • Styring, A. K., Manning, H., Fraser, R. A., Wallace, M., Jones, G., Charles, M., Heaton, T. H. E., Bogaard, A., & Evershed, R. P. (2013). The effect of charring and burial on the biochemical composition of cereal grains: investigating the integrity of archaeological plant material. Journal of Archaeological Science, 40, 4767–4779.

    Google Scholar 

  • Styring, A. K., Ater, M., Hmimsa, Y., Fraser, R., Miller, H., Neef, R., Pearson, J. A., & Bogaard, A. (2016). Disentangling the effect of farming practice from aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. The Anthropocene Review, 3, 2–22.

    Google Scholar 

  • Szpak, P. (2014). Complexities of nitrogen isotope biogeochemistry in plant–soil systems: implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science, 5, 1–19.

    Google Scholar 

  • Szpak, P., Longstaffe, F. J., Millaire, J.-F., & White, C. D. (2012a). Stable isotope biogeochemistry of seabird guano fertilization: results from growth chamber studies with maize (Zea mays). PLoS One, 7, e33741.

    Google Scholar 

  • Szpak, P., Millaire, J. F., White, C. D., & Longstaffe, F. J. (2012b). Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). Journal of Archaeological Science, 39, 3721–3740.

    Google Scholar 

  • Szpak, P., White, C. D., Longstaffe, F. J., Millaire, J. F., & Sánchez, V. F. V. (2013). Carbon and nitrogen isotopic survey of northern Peruvian plants: baselines for paleodietary and paleoecological studies. PLoS One, 8, e53763.

    Google Scholar 

  • Szpak, P., Metcalfe, J. Z., & Macdonald, R. A. (2017). Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science: Reports, 13, 609–616.

    Google Scholar 

  • Tahmasebi, F., Longstaffe, F. J., Zazula, G., & Bennett, B. (2017). Nitrogen and carbon isotopic dynamics of subarctic soils and plants in southern Yukon territory and its implications for paleoecological and paleodietary studies. PLoS One, 12, e0183016.

    Google Scholar 

  • Tahmasebi, F., Longstaffe, F. J., & Zazula, G. (2018). Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon, Canada. PLoS One, 13, e0192713.

    Google Scholar 

  • Teeri, J. A., & Gurevitch, J. (1984). Environmental and genetic control of crassulacean acid metabolism in two crassulacean species and an F1 hybrid with differing biomass δ 13C values. Plant, Cell & Environment, 7, 589–596.

    Google Scholar 

  • Tieszen, L. L. (1991). Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science, 18, 227–248.

    Google Scholar 

  • Tieszen, L. L., & Fagre, T. (1993). Carbon isotopic variability in modern and archaeological maize. Journal of Archaeological Science, 20, 25–40.

    Google Scholar 

  • Tiunov, A. V. (2007). Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin, 34, 395–407.

    Google Scholar 

  • Turner, G. L., Bergersen, F. J., & Tantala, H. (1983). Natural enrichment of 15N during decomposition of plant material in soil. Soil Biology and Biochemistry, 15, 495–497.

    Google Scholar 

  • Vaiglova, P., Bogaard, A., Collins, M., Cavanagh, W., Mee, C., Renard, J., Lamb, A., Gardeisen, A., & Fraser, R. (2014a). An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: a new look at Neolithic farming. Journal of Archaeological Science, 42, 201–215.

    Google Scholar 

  • Vaiglova, P., Snoeck, C., Nitsch, E., Bogaard, A., & Lee-Thorp, J. (2014b). Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains. Rapid Communications in Mass Spectrometry, 28, 2497–2510.

    Google Scholar 

  • Van Der Merwe, N. J., & Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science, 18, 249–260.

    Google Scholar 

  • van Klinken, G. J. (1999). Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Science, 26, 687–695.

    Google Scholar 

  • Vervaet, H., Boeckx, P., Unamuno, V., Van Cleemput, O., & Hofman, G. (2002). Can δ 15N profiles in forest soils predict NO3 loss and net N mineralization rates? Biology and Fertility of Soils, 36, 143–150.

    Google Scholar 

  • Vitousek, P. M., Shearer, G., & Kohl, D. H. (1989). Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia, 78, 383–388.

    Google Scholar 

  • Wang, C., Wang, X., Liu, D., Wu, H., Lü, X., Fang, Y., Cheng, W., Luo, W., Jiang, P., Shi, J., Yin, H., Zhou, J., Han, X., & Bai, E. (2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5, 4799.

    Google Scholar 

  • Warinner, C., Garcia, N. R., & Tuross, N. (2013). Maize, beans and the floral isotopic diversity of highland Oaxaca, Mexico. Journal of Archaeological Science, 40, 868–873.

    Google Scholar 

  • Webb, R.H. (1985). Late Holocene flooding on the Escalante River, south-central Utah. Unpublished PhD thesis, The University of Arizona.

  • Williams, D. G., & Ehleringer, J. R. (2000). Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah. Western North American Naturalist, 60, 121–129.

    Google Scholar 

  • Winter, K., & Holtum, J. A. (2002). How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiology, 129, 1843–1851.

    Google Scholar 

  • Winter, K., Garcia, M., & Holtum, J. A. M. (2008). On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. Journal of Experimental Botany, 59, 1829–1840.

    Google Scholar 

  • Withers, K., & Mead, J. I. (1993). Late Quaternary vegetation and climate in the Escalante River basin on the Central Colorado Plateau. Great Basin Naturalist, 53, 145–161.

  • Wooller, M., Smallwood, B., Scharler, U., Jacobson, M., & Fogel, M. (2003). A taphonomic study of δ 13C and δ 15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology. Organic Geochemistry, 34, 1259–1275.

    Google Scholar 

  • Wooller, M. J., Zazula, G. D., Blinnikov, M., Gaglioti, B. V., Bigelow, N. H., Sanborn, P., Kuzmina, S., & La Farge, C. (2011). The detailed palaeoecology of a mid-Wisconsinan interstadial (ca. 32 000 14C a BP) vegetation surface from interior Alaska. Journal of Quaternary Science, 26, 746–756.

    Google Scholar 

  • Yang, Q., Li, X., Liu, W., Zhou, X., Zhao, K., & Sun, N. (2011). Carbon isotope fractionation during low temperature carbonization of foxtail and common millets. Organic Geochemistry, 42, 713–719.

    Google Scholar 

Download references

Acknowledgments

We thank Janet and David Gillette (Museum of Northern Arizona) and John Spence (National Park Service) for access to samples, Paul Szpak and Ed Grant for valuable discussions, Michael Richards and Fred Longstaffe for laboratory facilities and equipment, and Reba Macdonald, Christina Cheung, Joe Hepburn, and Grace Yau for laboratory assistance. Paul Szpak and three anonymous reviewers provided valuable comments on earlier drafts of this manuscript. Funding for this study was provided by a Killam Postdoctoral Research Fellowship, a Social Science and Humanities Research Council of Canada Banting Postdoctoral Research Fellowship, and the Larry D. Agenbroad Legacy Fund for Research from The Mammoth site of Hot Springs South Dakota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Z. Metcalfe.

Electronic supplementary material

ESM 1

(XLSX 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metcalfe, J.Z., Mead, J.I. Do Uncharred Plants Preserve Original Carbon and Nitrogen Isotope Compositions?. J Archaeol Method Theory 26, 844–872 (2019). https://doi.org/10.1007/s10816-018-9390-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-018-9390-2

Keywords

Navigation