Advertisement

Journal of Archaeological Method and Theory

, Volume 21, Issue 2, pp 288–305 | Cite as

Simulation as Narrative: Contingency, Dialogics, and the Modeling Conundrum

  • James McGlade
Article

Abstract

In this paper, we will cast a critical eye on the practice of simulation modeling in archaeology, focusing on some of the unwritten assumptions underpinning currently popular agent-based approaches. We shall suggest the need for (1) a better integration with the basic tenets of complexity theory, (2) a stronger focus on epistemological issues, rather than on technological/methodological preoccupations, and (3) a distributed ecology of models functioning as an exploratory research laboratory. In essence, we argue for a more discursive, dialogic approach that places modeling in the arena of narrative construction, rather than the pursuit of some representation of “reality.”

Keywords

Simulation modeling Archaeology Agent-based models Complexity Contingency Epistemology Dialogics Hermeneutics 

Notes

Acknowledgments

I would like to thank Bernardo Rondelli and Xavi Rubio for some stimulating discussions on a number of issues that subsequently formed the basis of the present paper.

References

  1. Allen, P. M. (1997). Cities and regions as self-organizing systems: models of complexity. London: Taylor and Francis.Google Scholar
  2. Allen, T. F. H., & Hoekstra, T. (1992). Toward a unified ecology. New York: Columbia University Press.Google Scholar
  3. Allen, T. F. H., & Starr, T. F. (1982). Hierarchy: perspectives on ecological complexity. Chicago: University of Chicago Press.Google Scholar
  4. Archer, M. (1988). Culture and agency: the place of culture in social theory. Cambridge: Cambridge University Press.Google Scholar
  5. Arthur, B. A. W. (1994). Increasing returns and path dependence in the economy. Ann Arbor: University of Michigan Press.Google Scholar
  6. Axtell, R. (2007). What economic agents do: how cognition and interaction lead to emergence and complexity. The Review of Austrian Economics, 20(2–3), 105–120.CrossRefGoogle Scholar
  7. Bentley, A., & Maschner, H. D. G. (eds) (2003). Complex systems and archaeological research: empirical and theoretical applications. Salt Lake City: University of Utah Press.Google Scholar
  8. Berkes, F. (2002). Cross-scale institutional linkages: perspectives from the bottom- up. In E. Ostrom, T. Dietz, N. Dolšak, P. C. Stern, S. Stonich, & E. U. Weber (Eds.), The drama of the commons (pp. 239–319). Washington, D.C.: National Academy Press.Google Scholar
  9. Berkes, F. (2006). From community-based resource management to complex systems: the scale issue and marine commons. Ecology and Society, 11(1), 45. http://www.ecologyandsociety.org/vol11/iss1/art45.Google Scholar
  10. Bertuglia, C. S., & Vaio, F. (2005). Nonlinearity, chaos and complexity: the dynamics of natural and social systems. Oxford: Oxford University Press.Google Scholar
  11. Bharaty, G. K. & Silverman, B. G. (2010). Validating agent based social systems models. Proceedings of the 2010 Winter Simulation Conference. Baltimore, MD. December 5–8, 2010.Google Scholar
  12. Bretagnolles, A., & Pumain, D. (2010). Simulating urban networks through multiscalar space-time dynamics (Europe and United States, 17th -20th centuries). Urban Studies, 47(13), 2819–2839.CrossRefGoogle Scholar
  13. Burton, R. M. (2003). Computational laboratories for organization science: questions, validity and docking. Computational & Mathematical Organization Theory, 9, 91–108.CrossRefGoogle Scholar
  14. Cash, D. W., et al. (2006). Scale and cross-scale dynamics: governance and information in a multilevel world. Ecology and Society, 11(2), 8. http://www.ecologyandsociety.org/vol11/iss2/art8/.Google Scholar
  15. Castelfranchi, C. (1997). Modeling social interaction for AI agents. Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence: 1567–1576.Google Scholar
  16. Clarke, D. L. (1972). Models in archaeology. London: Methuen.Google Scholar
  17. Conte, R., Hegselmann, R., & Terna, P. (Eds.). (1997). Simulating social phenomena. Berlin: Springer.Google Scholar
  18. Costall, A. (2006). On being the right size: affordances and the and the meaning of scale. In G. Lock & B. Molineaux (Eds.), Confronting scale in archaeology: issues of theory and practice (pp. 15–26). New York: Springer.Google Scholar
  19. Costopoulos, A., & Lake, M. W. (Eds.). (2010). Simulating change: archaeology into the twenty-first century. Salt Lake City: University of Utah Press.Google Scholar
  20. Cumming, G. S., Cumming, D. H. M., & Redman, C. L. (2006). Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecology and Society, 11(1), 14. http://www.ecologyandsociety.org/vol11/iss1/art14/.Google Scholar
  21. David, P. A. (1985). Clio and the economics of QWERTY. American Economic Association Papers and Proceedings, 75(2), 332–337.Google Scholar
  22. David, P. A. (2000). Path dependence, its critics and the quest for ‘historical economics’. In P. Garrouste & S. Ioannides (Eds.), Evolution and path dependence in economic ideas: past and present (pp. 15–40). Cheltenham: Edward Elgar Publishing.Google Scholar
  23. David, D., & Courdier, R (2008). Emergence as metaknowledge: refining simulation models through emergence reification, European simulation and modelling. Conference (ESM'08): 25–27.Google Scholar
  24. Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., & McCarroll, S. (1999). “Understanding Anasazi culture change through agent-based modelling”. In T. A. Kohler & G. J. Gummerman (Eds.), Dynamics in human and primate societies. Agent-based modeling of social and spatial processes (pp. 179–207). Oxford: Oxford University.Google Scholar
  25. Dessalles, J.-L., Müller, J.-P., & Phan, D. (2007). Emergence in multi-agent systems: conceptual and methodological issues. In D. Phan & F. Amblard (Eds.), Agent based modelling and simulations in the human and social sciences (pp. 327–356). Oxford: The Bardwell Press.Google Scholar
  26. Dessalles J-L, Ferber J., Phan D. (2008) Emergence in multi-agent systems: review of conceptual and methodological issues for the application to the social sciences, in Y. Shan & A. Yang (dir.) Intelligent complex adaptive systems, Calgary, Alberta: Idea Group Inc.: 255–299.Google Scholar
  27. Doran, J., Palmer, M., Gilbert, N., & Mellars, P. (1994). The EOS project: modeling upper Paleolithic social change. In N. Gilbert & J. Doran (Eds.), Artificial societies (pp. 195–221). London: UCL Press.Google Scholar
  28. Epstein, J. M. (2006). Generative social science: studies in agent-based computational modeling. Princeton: Princeton University Press.Google Scholar
  29. Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: social science from the bottom up. Cambridge: The MIT Press.Google Scholar
  30. Gilbert, N. (2008). Agent-based models (quantitative applications in the social sciences). Berlin: Springer.Google Scholar
  31. Gilbert, N., & Doran, J. E. (Eds.). (1994). Simulating societies: the computer simulation of social phenomena. London: UCL Press.Google Scholar
  32. Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. Berlin: Springer.Google Scholar
  33. Godfrey-Smith, P. (2009). Models and fictions in science. Philosophical Studies, 143, 101–116.CrossRefGoogle Scholar
  34. Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97, 632–648.CrossRefGoogle Scholar
  35. Gould, S. J. (1989). Wonderful life: the Burgess Shale and the nature of history. New York: W.W. Norton & Co.Google Scholar
  36. Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: understanding transformations in human and natural systems. Washington, D.C.: Island Press.Google Scholar
  37. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: The MIT Press/A Bradford Book.Google Scholar
  38. Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62, 447–502.CrossRefGoogle Scholar
  39. Huberman, B. A., & Hogg, T. (Eds.). (1988). The ecology of computation. Amsterdam: North Holland.Google Scholar
  40. Kauffman, S. (1993). Origins of order: self-organization and selection in evolution. Oxford: Oxford University Press.Google Scholar
  41. Kaufman, S. (1995). At home in the universe: the search for the laws of self-organization and complexity. New York: Oxford University Press.Google Scholar
  42. Kiel, L. D., & Elliott, E. (1997). Chaos theory in the social sciences: foundations and applications. Ann Arbor: University of Michigan Press.Google Scholar
  43. Kohler, T. A., & Gumerman, G. J. (Eds.). (2000). Dynamics in human and primate societies: agent-based modelling of social and spatial processes. New York: Oxford University Press.Google Scholar
  44. Kohler, T. A., & van der Leeuw, S. E. (2007). The model-based archaeology of socionatural systems. Santa Fe: SAR Press.Google Scholar
  45. Lake, M. W. (2000). MAGICAL computer simulation of Mesolithic foraging. In T. A. Kohler & G. J. Gumerman (Eds.), Dynamics in human and primate societies: agent-based modelling of social and spatial processes (pp. 107–143). Oxford and New York: Oxford University Press.Google Scholar
  46. Lake, M. W. (2010). The uncertain future of simulating the past, in A. Costopoulos & M W Lake (eds). Simulating change: archaeology into the twenty-first century. Salt Lake City: University of Utah Press.Google Scholar
  47. Leombruni, R., Richiardi, M., Saam, N.J., and Sonnessa, M. (2006). A common protocol for agent-based social simulation, Journal of Artificial Societies and Social Simulation, 9(1). http://jasss.soc.surrey.ac.uk/9/1/15.html
  48. Livet, P. (2007). Towards an epistemology of multi-agent simulation in social sciences. In D. Phan & F. Amblard (Eds.), Agent-based modelling and simulation in the social and human sciences (pp. 23–44). Oxford: The Bardwell Press.Google Scholar
  49. Livet, P., Miller, J.-P., Phan, D., & Sanders, L. (2010). Ontology, a Mediator for Agent-Based Modeling in Social Science. Journal of Artificial Societies and Social Simulation, 13(1), 3. http://jasss.soc.surrey.ac.uk/13/1/3.html.Google Scholar
  50. Mahoney, J. (2000). Path dependence in historical sociology. Theory and Society, 29(4), 507–548.CrossRefGoogle Scholar
  51. Marion, R. (1999). The edge of organization. Chaos, complexity theories and formal social systems. London: Sage Publications.Google Scholar
  52. McGlade, J. (1995). Archaeology and the ecodynamics of human-modified landscapes. Antiquity, 69, 113–132.Google Scholar
  53. McGlade, J. (1999). The times of history: archaeology, narrative, and non-linear causality. In T. Murray (Ed.), Archaelogical approaches to time (pp. 139–163). London: Routledge.Google Scholar
  54. McGlade, J. (2003). The map is not the territory: complexity, complication and representation. In A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeological research: empirical and theoretical applications (pp. 111–119). Salt Lake City: University of Utah Press.Google Scholar
  55. McGlade, J. (2005). Systems and simulacra: modelling, simulation and archaeological representation. In H. D. G. Maschner & C. Chippindale (Eds.), Handbook of theories and methods in archaeology (pp. 554–601). New York: AltaMira Press.Google Scholar
  56. McGlade, J. (2006). Ecohistorical regimes and la longue durée: an approach to mapping long-term social change. In E. Garnsey & J. McGlade (Eds.), Complexity and co-evolution: continuity and change in socio-economic systems (pp. 77–114). Cheltenham: Edward Elgar.Google Scholar
  57. McGlade, J. & Garnsey, E. (2006). The nature of complexity, in E. Garnsey & J.McGlade (Eds.), Coevolution and complexity in socio-economic systems. London: Edward Elgar: 1-21.Google Scholar
  58. McGlade, J., & van der Leeuw, S. E. (1997). Archaeology and nonlinear dynamics: new approaches to long-term change. In S. E. van der Leeuw & J. McGlade (Eds.), Archaeology: time and structured transformation (pp. 1–22). London: Routledge.Google Scholar
  59. Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley.Google Scholar
  60. O'Neill, R. V., DeAngelis, D., Waide, J., & Allen, T. F. H. (1986). A hierarchical concept of ecosystems. Princeton: Princeton University Press.Google Scholar
  61. Oreskes, N., Shraderfrechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical-models in the earth-sciences. Science, 263(5147), 641–646.CrossRefGoogle Scholar
  62. O'Sullivan, D., & Haklay, M. (2000). Agent-based models and individualism: is the world agent-based? Environment and Planning, 32, 1409–1425.CrossRefGoogle Scholar
  63. Peck, S. L. (2008). The hermeneutics of ecological simulation. Biology and Philosophy, 23, 383–402.CrossRefGoogle Scholar
  64. Peck, S. L. (2012). Agent-based Models as Fictive Instantiations of Ecological Processes. Philosophy and Theoretical Biology, 4, e303. doi: 10.3998/ptb.6959004.0004.003.CrossRefGoogle Scholar
  65. Prigogine, I., & Stengers, I. (1984). Order out of chaos: man’s new dialogue with nature. New York: Bantham Books.Google Scholar
  66. Pumain D. (2008) The socio-spatial dynamics of systems of cities and innovation processes: a multi-level model, in: S. Albeverio, D. Andrey, P. Giordano, A. Vancheri (eds). The dynamics of complex urban systems. an interdisciplinary approach, Heidelberg, Heidelberg: Physica Verlag: 373-389.Google Scholar
  67. Sanders, L., Pumain, D., Mathian, H., Guérin-Pace, F., & Bura, S. (1997). SIMPOP: a multi-agent system for the study of urbanism. Environment and Planning B, 24, 287–305.CrossRefGoogle Scholar
  68. Schreiber, C., & Carley, K. M. (2004). Going beyond the data: empirical validation leading to grounded theory. Computational & Mathematical Organization Theory, 10, 155–164.CrossRefGoogle Scholar
  69. Shermer, M. (1995). Exorcising Laplace’s demon: chaos and anti-chaos, history and metahistory. History and Theory, 34(1), 59–884.CrossRefGoogle Scholar
  70. Vicari, R. M., Floresa, C. D., Silvestrea, A. M., Seixasb, L. J., Ladeirac, M., & Coelho, H. (2003). A multi-agent intelligent environment for medical knowledge. Artificial Intelligence in Medicine, 27, 335–366.CrossRefGoogle Scholar
  71. Whitehead, A. N. (1926). Science and the modern world. Cambridge: Cambridge University Press.Google Scholar
  72. Wilkinson, T. J., et al. (2007). Modeling settlement systems in a dynamic environment. Case studies from Mesopotamia. In T. A. Kohler & S. E. van der Leeuw (Eds.), The model-based archaeology of socionatural systems (pp. 175–208). Santa Fe: School for Advance Research Press.Google Scholar
  73. Windrum P., Fagiolo G., Moneta A. (2007) Empirical validation of agent-based models: alternatives and prospects, Journal of Artificial Societies and Social Simulation 10, 2, 8 http://jasss.soc.surrey.ac.uk/10/2/8.html

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Universitat Oberta de CatalunyaBarcelonaSpain

Personalised recommendations