Advertisement

Journal of Archaeological Method and Theory

, Volume 19, Issue 1, pp 132–160 | Cite as

Near-Infrared Aerial Crop Mark Archaeology: From its Historical Use to Current Digital Implementations

  • Geert Julien Verhoeven
Article

Abstract

Even though most archaeologists are aware of the crop mark phenomenon and its possible archaeological nature, the information on its occurrence and specific character is, in most cases, obtained by imaging in the visible spectrum. After the Second World War, the occasional use of near-infrared (NIR) sensitive emulsions attributed this kind of invisible imaging with a great potential. However, archaeological NIR imaging always remained restricted due to several reasons not, at least, its complicated workflow and uncertain results. This article wants to delve deeper into the subject, looking at the conventional film-based approach of NIR aerial reconnaissance and its historical use in archaeological crop mark research, after which a current straightforward digital approach will be outlined. By explaining the spectral properties of plants and using examples of recently acquired NIR imagery in comparison with visible frames, it should become clear why the detection and interpretation of crop marks can benefit from low-cost digital NIR imaging in certain situations.

Keywords

Aerial archaeology Crop mark Digital photography Near-infrared photography Spectral response Vegetation stress 

Notes

Acknowledgements

This paper arises from the author’s Ph.D. which studied the application of remote sensing in archaeological surveys. This research was supervised by Professor Dr. F. Vermeulen (Department of Archaeology, Ghent University), who also directs the Potenza Valley survey. Finally, Tim Sautois and Wouter Van Hecke are acknowledged for proofreading the article and correcting the English where needed. All errors and misconceptions remain, of course, the author’s own responsibility.

References

  1. Adams, M. L., Philpot, W. D., & Norvell, W. A. (1999). Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves on stressed vegetation. International Journal of Remote Sensing, 20, 3663–3675.Google Scholar
  2. Agache, R. (1968). Essai d’utilisation aérienne et au sol d’émulsions spectrozonales, dites « infrarouges couleurs». Bulletin de la Société Préhistorique Française, 65, 198–200.Google Scholar
  3. Aldakheel, Y., & Danson, F. (1997). Spectral reflectance of dehydrating leaves: measurements and modelling. International Journal of Remote Sensing, 18, 3683–3690.Google Scholar
  4. Allen, G. W. G. (1984). Discovery from the air. Aerial archaeology. The Journal for Air Photography and Archaeology, 10, 37–92.Google Scholar
  5. Aqdus, S.A., Hanson, W.S., Drummond, J. (2007). A comparative study for finding archaeological crop marks using airborne hyperspectral, multispectral and digital photographic data. In: Proceedings of the 2007 Annual Conference of the Remote Sensing & Photogrammetry Society (RSPSoc2007).Google Scholar
  6. Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234–253.Google Scholar
  7. Avery, T. E., & Lyons, T. R. (1981). Remote sensing. Aerial and terrestrial photography for archeologists. Washington: Cultural Resources Management Division.Google Scholar
  8. Backe Forsberg, Y., Holmgren, R., Lanorte, A., Lasaponara, R., & Masini, N. (2008). Airborne and satellite multispectral imagery at the Etruscan site of San Giovenale, Blero (Lazio)—preliminary results. In R. Lasaponara & N. Masini (Eds.), Remote sensing for archaeology and cultural heritage management. Proceedings of the 1st International EARSeL Workshop, CNR, Rome (pp. 225–228). Rome: Aracne.Google Scholar
  9. Baret, F., & Jacquemoud, S. (1994). Modeling canopy spectral properties to retrieve biophysical and biochemical characteristics. In J. Hill & J. Mégier (Eds.), Imaging spectrometry—a tool for environmental observations (pp. 145–167). Amsterdam: Kluwer.Google Scholar
  10. Baret, F., Vanderbilt, V. C., Steven, M. D., & Jacquemoud, S. (1994). Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sensing of Environment, 48, 253–260.Google Scholar
  11. Bassani, C., Cavalli, R. M., Pascucci, S., & Pignatti, S. (2008). Airborne hyperspectral remote sensing as a tool for detecting buried archaeological structures: Preliminary results for land cover in different contexts. In R. Lasaponara & N. Masini (Eds.), Remote sensing for archaeology and cultural heritage management. Proceedings of the 1st International EARSeL workshop, CNR, Rome (pp. 75–78). Rome: Aracne.Google Scholar
  12. Benton, A. R., Haas, R. H., Rouse, J. W., & Toler, R. W. (1976). Low-cost aerial photography for vegetation analysis. Journal of Applied Photographic Engineering, 2, 46–49.Google Scholar
  13. Bewley, R. H. (2003). Aerial survey for archaeology. The Photogrammetric Record, 18, 273–292.Google Scholar
  14. Blakeman, R. H. (1990). The identification of crop disease and stress by aerial photography. In M. D. Steven & J. A. Clark (Eds.), Applications of remote sensing in agriculture (pp. 229–254). London: Butterworths.Google Scholar
  15. Bobbe, T. (1997). Applications of a colour infrared digital camera system as a remote sensing tool for natural resource management. In Proceedings of the first North American symposium on small format aerial photography, Cloquet, Minnesota, USA (pp. 71–79). Bethesda: American Society for Photogrammetry and Remote SensingGoogle Scholar
  16. Bobbe, T. J., & Zigaldo, J. P. (1995). Airborne: color infrared digital camera system for natural resources surveys. Earth Observation Magazine, 4, 60–62.Google Scholar
  17. Bowman, W. D. (1989). The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves. Remote Sensing of Environment, 30, 249–255.Google Scholar
  18. Braasch, O. (2007). Gallipoli ahead—air survey between the Baltic and Mediterranean. In I. Kuzma (Ed.), Publikácia vznikla v rámci Centra excelentnosti SAV Výskumné centrum Najstarsích dejín Podunajska pri Archeologickom ústave SAV v Nitre, Nitra (pp. 84–96). Nitra: Archeologickom ústave SAV.Google Scholar
  19. Bradford, J. (1957). Ancient landscapes. Studies in field archaeology. London: G. Bell and Sons.Google Scholar
  20. Broge, N. H., & Mortensen, J. V. (2002). Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectane data. Remote Sensing of Environment, 81, 45–57.Google Scholar
  21. Brooner, W. G., & Simonett, D. S. (1971). Crop discrimination with color infrared photography: a study in Douglas County, Kansas. Remote Sensing of Environment, 2, 21–35.Google Scholar
  22. Buettner-Janusch, J. (1954). Use of infrared photography in archaeological field work. American Antiquity, 20, 84–87.Google Scholar
  23. Busch, D. D. (2007). Digital infrared pro secrets. Boston: Thomson.Google Scholar
  24. Cameron, H. L. (1958). History from the air. Photogrammetric Engineering, 24, 366–375.Google Scholar
  25. Carter, G. A. (1991). Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany, 78, 916–924.Google Scholar
  26. Carter, G. A. (1993). Responses of leaf spectral reflectance to plant stress. American Journal of Botany, 80, 239–243.Google Scholar
  27. Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15, 697–703.Google Scholar
  28. Carter, G.A. (2001) General spectral characteristics of leaf reflectance responses to plant stress and implications for the remote sensing of vegetation. In: Proceedings, 2001 ASPRS annual conference: Gateway to the new millennium, St. Louis. Bethesda: American Society for Photogrammetry and Remote Sensing.Google Scholar
  29. Carter, G. A., & Estep, L. (2002). General spectral characteristics of leaf reflectance responses to plant stress and their manifestation at the landscape scale. In R. S. Muttiah (Ed.), From laboratory spectroscopy to remotely sensed spectra of terrestrial ecosystems (pp. 271–293). Dordrecht: Kluwer Academic Publishers.Google Scholar
  30. Carter, G. A., & Knapp, A. K. (2001). Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88, 677–684.Google Scholar
  31. Carter, G. A., & McCain, D. C. (1993). Relationship of leaf spectral reflectance to chloroplast water content determined using NMR microscopy. Remote Sensing of Environment, 46, 305–310.Google Scholar
  32. Carter, G. A., & Young, D. R. (1993). Foliar spectral reflectance and plant stress on a barrier island. International Journal of Plant Sciences, 154, 298–305.Google Scholar
  33. Carter, G. A., Rebbeck, J., & Percy, K. E. (1995). Leaf optical properties in Liriodendron tulipifera and Pinus strobus as influenced by increased atmospheric ozone and carbon dioxide. Canadian Journal of Forest Research, 25, 407–412.Google Scholar
  34. Chapin, F. S. (1991). Integrated responses of plants to stress. Bioscience, 41, 29–36.Google Scholar
  35. Chappelle, E. W., Kim, M. S., & McMurtrey, J. E., III. (1992). Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239–247.Google Scholar
  36. Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. Rencz (Ed.), Remote sensing for the earth sciences (pp. 3–58). New York: Wiley.Google Scholar
  37. Clark, R.N., King, T.V.V., Ager, C., Swayze, G.A. (1995). Initial vegetation species and senescence/stress indicator mapping in the San Luis Valley, CO, using imaging spectrometer data. In: H.H. Posey, J.A. Pendelton, D. Van Zyl (Eds.), Proceedings: Summiville Forum 1995 (pp. 64–69)Google Scholar
  38. Colwell, J. E. (1974). Vegetation canopy reflectance. Remote Sensing of Environment, 3, 175–183.Google Scholar
  39. Colwell, R. N., Carneggie, D., Croxton, R., Manzer, F., Simonett, D., & Steiner, D. (1970). Applications of remote sensing in agriculture and forestry. In Committee on Remote Sensing for Agricultural Purposes (Ed.), Remote sensing with special reference to agriculture and forestry (pp. 164–223). Washington: National Academy of Sciences.Google Scholar
  40. Conlon, V. M. (1973). Camera techniques in archaeology. London: John Baker.Google Scholar
  41. Crawford, O. G. S., & Keiller, A. (1928). Wessex from the air. Oxford: Oxford University Press.Google Scholar
  42. Crawshaw, A. (1995). Oblique aerial photography—aircraft, cameras and films. In J. Kunow (Ed.), Luftbildarchäologie in Ost- und Mitteleuropa. Internationales Symposium, Kleinmachnow, Land Brandenburg (pp. 67–76). Potsdam: Verlag Brandenburgisches Landesmuseum für Ur- und Frühgeschichte.Google Scholar
  43. Curcio, J. A., & Petty, C. C. (1951). The near infrared absorption spectrum of liquid water. Journal of the Optical Society of America, 41, 302–304.Google Scholar
  44. Curran, P. J. (1980). Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4, 315–341.Google Scholar
  45. Curran, P. J. (1983). Multispectral remote sensing for the estimation of green leaf area index. Philosophical Transactions of the Royal Society London. A. Mathematical and Physical Sciences, 309, 257–270.Google Scholar
  46. Curran, P. J. (1985). Aerial photography for the assessment of crop condition: a review. Applied Geography, 5, 347–360.Google Scholar
  47. Dean, C., Warner, T. A., & McGraw, J. B. (2000). Suitability of the DCS460c colour digital camera for quantitative remote sensing analysis of vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 55, 105–118.Google Scholar
  48. Doneus, M. (2005). Digital aerial photography—fancy gadget or underestimated necessity? AARGnews Supplement 1. Festschrift dedicated to Rog Palmer on his 60th Birthday, pp. 40–42.Google Scholar
  49. Doneus, M., & Neubauer, W. (2010). LBI for archaeological prospection and virtual archaeology. AARGNews, 41, 11.Google Scholar
  50. Donoghue, D. N. M., & Shennan, I. (1988a). The application of multispectral remote sensing to wetland archaeology. In P. Murphy & C. French (Eds.), The exploitation of wetlands (pp. 47–59). Oxford: Archaeopress.Google Scholar
  51. Donoghue, D. N. M., & Shennan, I. (1988b). The application of remote sensing to environmental archaeology. Geoarchaeology, 3, 275–285.Google Scholar
  52. Dorrell, P. G. (1994). Photography in archaeology and conservation. Cambridge: Cambridge University Press.Google Scholar
  53. Driver, T. (2004). Chairman’s piece. AARGnews, 29, 6–8.Google Scholar
  54. Due Trier, Ø., Loska, A., Øyen Larsen, S., & Solberg, R. (2008). Detection of burial mounds in high-resolution satellite images of agricultural land. In R. Lasaponara & N. Masini (Eds.), Remote sensing for archaeology and cultural heritage management. Proceedings of the 1st International EARSeL Workshop, CNR, Rome (pp. 17–21). Rome: Aracne.Google Scholar
  55. Dungan, J., Johnson, L., Billow, C., Matson, P., Mazzurco, J., Moen, J., et al. (1996). High spectral resolution reflectance of Douglas fir grown under different fertilization treatments: experiment design and treatment effects. Remote Sensing of Environment, 55, 217–228.Google Scholar
  56. Eastman Kodak Company (1999). Conversion of light (Photons) to electronic charge. Eastman Kodak Company, Rochester. http://www.kodak.com/US/en/digital/pdf/ccdPrimerPart1.pdf. Accessed 26 June 2005.
  57. Eastman Kodak Company (2004). Kodak Ektachrome Professional Infrared EIR Film. Eastman Kodak Company, Rochester. http://www.kodak.com/global/en/professional/support/techPubs/ti2323/ti2323.pdf. Accessed 28 Oct 2005.
  58. Eastman Kodak Company (2005). Kodak Aerochrome III Infrared Film 1443. Eastman Kodak Company, Rochester. http://www.kodak.com/eknec/documents/7b/0900688a802b097b/EN_ti2562.pdf. Accessed 27 Oct 2005.
  59. Eastman Kodak Company. (1985). Photography from lightplanes and helicopters. Rochester: Eastman Kodak Company.Google Scholar
  60. Edeine, B. (1956). Une méthode pratique pour la détection aérienne des sites archéologiques, en particulier par la photographie sur films en couleurs et sur film infra-rouges. Bulletin de la Société Préhistorique Française, 53, 540–546.Google Scholar
  61. Estep, L., Carter, G. A., & Berglund, J. (2005). Derivative analysis of AVIRIS data for crop stress detection. Photogrammetric Engineering and Remote Sensing, 71, 1417–1421.Google Scholar
  62. Evans, R. (2007). The weather and other factors controlling the appearance of crop marks on clay and ‘difficult’ soils. In J. Mills & R. Palmer (Eds.), Populating clay landscapes (pp. 16–27). Stroud: Tempus.Google Scholar
  63. Evans, R., & Jones, R. J. A. (1977). Crop marks and soil marks at two archaeological sites in Britain. Journal of Archaeological Science, 4, 63–76.Google Scholar
  64. Everitt, J.H., Escobar, D.E., Noriega, J.R., Davis, M.R., Cavazos, I. (1997) A digital imaging system and its application to natural resource management. In Proceedings of the first North American symposium on small format aerial photography, Cloquet, Minnesota, USA (pp. 123–135). Bethesda: American Society for Photogrammetry and Remote SensingGoogle Scholar
  65. Foley, S., Rivard, B., Sanchez-Azofeifa, G. A., & Calvo, J. (2006). Foliar spectral properties following leaf clipping and implications for handling techniques. Remote Sensing of Environment, 103, 265–275.Google Scholar
  66. Fowler, M. J. F. (1995). Detection of archaeological features on multispectral satellite imagery. AARGnews, 10, 7–14.Google Scholar
  67. Fowler, M. J. F. (1996). High-resolution satellite imagery in archaeological application: a Russian satellite photograph of the stonehenge region. Antiquity, 70, 667–671.Google Scholar
  68. Fowler, M. J. F., & Fowler, Y. M. (2005). Detection of archaeological crop marks on declassified CORONA KH-4B intelligence satellite photography of Southern England. Archaeological Prospection, 12, 257–264.Google Scholar
  69. Gates, D. M. (1970). Physical and physiological properties of plants. In Committee on Remote Sensing for Agricultural Purposes (Ed.), Remote sensing with special reference to agriculture and forestry (pp. 224–252). Washington D.C: National Academy of Sciences.Google Scholar
  70. Gates, D. M., Keegan, H. J., Schleter, J. C., & Weidner, V. R. (1965). Spectral properties of plants. Applied Optics, 4, 11–20.Google Scholar
  71. Gausman, H. W. (1974). Leaf reflectance of near-infrared. Photogrammetric Engineering, 40, 183–191.Google Scholar
  72. Gausman, H. W., Allen, W. A., & Cardenas, R. (1969). Reflectance of cotton leaves and their structure. Remote Sensing of Environment, 1, 110–122.Google Scholar
  73. Gibson, L. H. (1978). Photography by infrared: its principles and applications (3rd ed.). New York: Wiley.Google Scholar
  74. Girard, M.-C., & Girard, C. M. (2003). Processing of remote sensing data. Lisse: Balkema Publishers.Google Scholar
  75. Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80, 76–87.Google Scholar
  76. Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271–282.Google Scholar
  77. Goguey, R. (1977). Est. Recherches aériennes de la Loire au Rhin en 1976. Dossiers de l’archéologie, 22, 48–56.Google Scholar
  78. Goillot, C. C. (1980). Significance of spectral reflectance for natural surfaces. In G. Fraysse (Ed.), Remote sensing application in agriculture and hydrology (pp. 53–68). Rotterdam: Balkema.Google Scholar
  79. GopalaPillai, S., & Tian, L. (1999). In-field variability detection and spatial yield modeling for corn using digital aerial imaging. Transactions of the ASAE, 42, 1911–1920.Google Scholar
  80. Graham, C. H. (1995). Kodak digital cameras for small format aerial photography. The Photogrammetric Record, 15, 325–327.Google Scholar
  81. Graham, R., & Koh, A. (2002). Digital aerial survey: theory and practice. Boca Raton: CRC Press.Google Scholar
  82. Gumerman, G. J., & Neely, J. A. (1972). An archaeological survey of the Tehuacan Valley, Mexico: a test of color infrared photography. American Antiquity, 37, 520–527.Google Scholar
  83. Guyot, G. (1990). Optical properties of vegetation canopies. In M. D. Steven & J. A. Clark (Eds.), Applications of remote sensing in agriculture (pp. 19–43). London: Butterworths.Google Scholar
  84. Hammond, P. C. (1963). Archaeological techniques for amateurs. New York: Van Nostrand.Google Scholar
  85. Hampton, J. N. (1974). An experiment in multispectral air photography for archaeological research. The Photogrammetric Record, 8, 37–64.Google Scholar
  86. Harp, E. (1968). Anthropological interpretation from color. In Manual of color aerial photography (pp. 384–385). Falls Church: American Society of Photogrammetry.Google Scholar
  87. Hatfield, J. L., Gitelson, A. A., Schepers, J. S., & Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, S-117–S-131.Google Scholar
  88. Heller, R. C. (1970). Imaging with photographic sensors. In Committee on Remote Sensing for Agricultural Purposes (Ed.), Remote sensing with special reference to agriculture and forestry (pp. 35–72). Washington: National Academy of Sciences.Google Scholar
  89. Hendry, G. A. F., Houghton, J. D., & Brown, S. B. (1987). Tansley review no. 11. The degradation of chorophyll—a biological enigma. The New Phytologist, 107, 255–302.Google Scholar
  90. Hershey, J. R., & Zhang, Z. (2006). US patent 20060066738, multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor.Google Scholar
  91. Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4, 273–288.Google Scholar
  92. Hunt, E. R., Jr., & Rock, B. N. (1989). Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sensing of Environment, 30, 43–54.Google Scholar
  93. Itek Data Corporation. (1965). Archaeological photo interpretation. Washington: United States Department of Commerce Clearinghouse.Google Scholar
  94. Jackson, R. D. (1986). Remote sensing of biotic and abiotic plant stress. Annual Review of Phytopathology, 24, 265–287.Google Scholar
  95. Jalmain, D. (1970). Archéologie aérienne en Île-de-France. Beauce, Brie, Champagne. Éditions Technip, Paris.Google Scholar
  96. Jensen, J. R. (2007). Remote sensing of the environment: an earth resource perspective (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  97. Jones, R.J.A. (1979). Crop marks induced by soil moisture stress at an iron age site in Midland England, UK. Archaeo-Physika 10 (Proceedings of the 18th International Symposium on Archaeometry and Archaeological Prospection, Bonn, 14–17 March 1978), pp. 656–668.Google Scholar
  98. Jones, R. J. A., & Evans, R. (1975). Soil and crop marks in the recognition of archaeological sites by air photography. In D. R. Wilson (Ed.), Aerial reconnaissance for archaeology (pp. 1–11). London: The Council for British Archaeology.Google Scholar
  99. Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 663–666.Google Scholar
  100. Kimes, D. S. (1983). Dynamics of directional reflectance factor distributions for vegetation canopies. Applied Optics, 22, 1364–1372.Google Scholar
  101. King, D., Walsh, P., & Ciuffreda, F. (1994). Airborne digital frame camera imaging for elevation determination. Photogrammetric Engineering and Remote Sensing, 60, 1321–1326.Google Scholar
  102. King, D. J., Haddow, K., Pitt, D.G. (1997). Evaluation of CIR digital camera imagery in regeneration assessment: research design and initial results. In Proceedings of the first North American symposium on small format aerial photography, Cloquet, Minnesota, USA (pp. 186–195). Bethesda: American Society for Photogrammetry and Remote Sensing.Google Scholar
  103. Knapp, A.K., Disperati, A., Hoppus, M. (1997). Evaluation of a colour infrared digital camera system for forest health protection applications in the Western United States and Southern Brazil. In Proceedings of the first North American symposium on small format aerial photography, Cloquet, Minnesota, USA (pp. 80–90). Bethesda: American Society for Photogrammetry and Remote Sensing.Google Scholar
  104. Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159.Google Scholar
  105. Koch, B., Ammer, U., Schneider, T., & Wittmeier, H. (1990). Spectroradiometer measurements in the laboratory and in the field to analyse the influence of different damage symptoms on the reflection spectra of forest trees. International Journal of Remote Sensing, 11, 1145–1164.Google Scholar
  106. Koyoma, T. (2006). Optics in digital still cameras. In J. Nakamura (Ed.), Image sensors and signal processing for digital still cameras (pp. 21–51). Boca Raton: Taylor & Francis.Google Scholar
  107. Krinov, E. L. (1971). Spectral reflectance properties of natural formations. Ottawa: National Research Council of Canada.Google Scholar
  108. Lasaponara, R., & Masini, N. (2006a). On the potential of QuickBird data for archaeological prospection. International Journal of Remote Sensing, 27, 3607–3614.Google Scholar
  109. Lasaponara, R., & Masini, N. (2006b). In S. Campana & M. Forte (Eds.), From space to place. 2nd international conference on remote sensing in archaeology. Proceedings of the 2nd International Workshop, CNR, Rome, Italy (pp. 13–20). Oxford: Archaeopress.Google Scholar
  110. Lasaponara, R., & Masini, N. (2007). Detection of archaeological crop marks by using satellite quickbird multispectral imagery. Journal of Archaeological Science, 34, 214–221.Google Scholar
  111. Lelong, C. C. D., Pinet, P. C., & Poilvé, H. (1998). Hyperspectral imaging and stress mapping in agriculture: a case study on wheat in Beauce (France). Remote Sensing of Environment, 66, 179–191.Google Scholar
  112. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.Google Scholar
  113. Lichtenthaler, H. K. (1998). The stress concept in plants: an introduction. Annals of the New York Academy of Sciences, 851, 187–198.Google Scholar
  114. Lobell, D. B., Asner, G. P., Law, B. E., & Treuhaft, R. N. (2002). View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS. International Journal of Remote Sensing, 23, 2247–2262.Google Scholar
  115. Lyon, J. G., Yuan, D., Lunetta, R. S., & Elvidge, C. D. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64, 143–150.Google Scholar
  116. Lyons, T. R., & Avery, T. E. (1977). Remote sensing: a handbook for archaeologists and cultural resource managers. Washington: National Park Service.Google Scholar
  117. Maas, S. J., & Dunlap, J. R. (1989). Reflectance, transmittance, and absorptance of light by normal, etiolated, and albino corn leaves. Agronomy Journal, 81, 105–110.Google Scholar
  118. Matheny, R. T. (1962). Value of aerial photography in surveying archaeological sites in coastal jungle regions. American Antiquity, 28, 226–230.Google Scholar
  119. Merzlyak, M. N., & Gitelson, A. A. (1995). Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). Journal of Plant Physiology, 145, 315–320.Google Scholar
  120. Moran, M. S., Pinter, P. J., Clothier, B. E., & Allen, S. G. (1989). Effects of water stress on the canopy architecture and spectral indices of irrigated alfalfa. Remote Sensing of Environment, 29, 251–261.Google Scholar
  121. Murtha, P. A. (1978). Remote sensing and vegetation damage: a theory for detection and assessment. Photogrammetric Engineering and Remote Sensing, 44, 1147–1158.Google Scholar
  122. Myers, V. I., Heilman, M. D., Lyon, R. J. P., Namken, L. N., Simonett, D., Thomas, J. R., et al. (1970). Soil, water and plant relations. In Committee on Remote Sensing for Agricultural Purposes (Ed.), Remote sensing with special reference to agriculture and forestry (pp. 253–297). Washington: National Academy of Sciences.Google Scholar
  123. Myneni, R. B., Maggion, S., Iaquinta, J., Privette, J. L., Gobron, N., Pinty, B., et al. (1995). Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote Sensing of Environment, 51, 169–188.Google Scholar
  124. Nakamura, J. (2006). Basics of image sensors. In J. Nakamura (Ed.), Image sensors and signal processing for digital still cameras (pp. 53–93). Boca Raton: Taylor & Francis.Google Scholar
  125. Nellis, M. D. (1982). Interpretation of crop health irregularities using color infrared photographs. Journal of Geography, 81, 61–63.Google Scholar
  126. Olthof, I., & King, D.J. (1997). Evaluation of textural information in airborne CIR digital camera imagery for estimation of forest stand leaf area index. In Proceedings of the first North American symposium on small format aerial photography, Cloquet, Minnesota, USA (pp. 154–164). Bethesda: American Society for Photogrammetry and Remote Sensing.Google Scholar
  127. Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3, 151–156.Google Scholar
  128. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.Google Scholar
  129. Peterson, D. L., & Running, S. W. (1989). Applications in the forest science and management. In G. Asrar (Ed.), Theory and applications of optical remote sensing (pp. 4210–4273). New York: John Wiley.Google Scholar
  130. Petit, J. P. (1977). Aquitaine. Premières recherches aériennes en Gironde. Dossiers de l’archéologie, 22, 34–37.Google Scholar
  131. Petrie, G. (2003). Airborne digital frame cameras. The technology is really improving! GeoInformatics, 6, 18–27.Google Scholar
  132. Pouliot, D. A., King, D. J., Bell, F. W., & Pitt, D. G. (2002). Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment, 82, 322–334.Google Scholar
  133. Powlesland, D. (2001). The Heslerton parish project: an integrated multi-sensor approach to archaeological study of Eastern Yorkshire, England. In S. Campana & M. Forte (Eds.), Remote sensing in archaeology (pp. 233–255). Florence: All’Insegna del Giglio.Google Scholar
  134. Powlesland, D. (2006). Redefining past landscapes: 30 years of remote sensing in the Vale of Pickering. In S. Campana & M. Forte (Eds.), From space to place. 2nd international conference on remote sensing in archaeology. Proceedings of the 2nd international workshop, CNR, Rome, Italy (pp. 197–201). Oxford: Archaeopress.Google Scholar
  135. Powlesland, D., Lyall, J., Donoghue, D.N.M. (1997). Enhancing the record through remote sensing. The application and integration of multi-sensor, non-invasive remote sensing techniques for the enhancement of the sites and monuments record. Heslerton Parish Project, N. Yorkshire, England. Internet Archaeology 2. intarch.ac. uk/journal/issue2/pld_index.html. Accessed 31 Jan 2008.Google Scholar
  136. Rabideau, G. S., French, C. S., & Holt, A. S. (1946). The absorption and reflection spectra of leaves, chloroplast suspensions, and chloroplast fragments as measured in an Ulbricht Sphere. American Journal of Botany, 33, 769–777.Google Scholar
  137. Rawling, S. O. (1946). Infra-red photography (3rd ed.). London: Blackie & Son Limited.Google Scholar
  138. Ray, S. F. (2002). Applied photographic optics. Lenses and optical systems for photography, film, video, electronic and digital imaging (3rd ed.). Oxford: Focal.Google Scholar
  139. Richardson, A. J., & Everitt, J. H. (1992). Using spectral vegetation indices to estimate rangeland productivity. Geocarto International, 1, 63–77.Google Scholar
  140. Rigaud, P., & Hersé, M. (1986). Télédétection photographique infrarouge à partir de ballons captifs. Comptes Rendus de l’Académie des Sciences. Série 2. Mécanique, Physique. Chimie, 303, 1703–1708.Google Scholar
  141. Riley, D. N. (1980). Factors in the development of crop marks. Aerial archaeology. The Journal for Air Photography and Archaeology, 4, 28–32.Google Scholar
  142. Rinker, J. N. (1975). Some technical aspects of film emulsions in relation to the analysis and interpretation of aerial photographs. In D. R. Wilson (Ed.), Aerial reconnaissance for archaeology (pp. 32–46). London: The Council for British Archaeology.Google Scholar
  143. Ross, K. (1933). Zur Photographie mit ultraviolettem und infrarotem Licht. Zeiss Nachrichten, 4, 19–27.Google Scholar
  144. Sandmeier, S. R., & Itten, K. I. (1999). Field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data. IEEE Transactions on Geoscience and Remote Sensing, 37, 978–986.Google Scholar
  145. Schepers, J. S., Blackmer, T. M., Wilhelm, W. W., & Resende, M. (1996). Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology, 148, 523–529.Google Scholar
  146. Schlerf, M., Atzberger, C., & Hill, J. (2005). Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95, 177–194.Google Scholar
  147. Scollar, I. (1964). Physical conditions tending to produce crop sites in the Rhineland. In Archéologie Aérienne (pp. 39–47) Paris: Colloque International. S.E.V.P.E.N.Google Scholar
  148. Scollar, I., Tabbagh, A., Hesse, A., & Herzog, I. (1990). Archaeological prospecting and remote sensing. Cambridge: Cambridge University Press.Google Scholar
  149. Shakir Hanna, S. H., & Girmay-Gwahid, B. (1998). Spectral characterization of water stress impact on some agricultural crops: II. Studies on alfalfa using handheld radiometer. In E. T. Engman (Ed.), Remote sensing for agriculture, ecosystems, and hydrology, Barcelona, Spain (pp. 296–306). Bellingham: SPIE.Google Scholar
  150. Shakir Hanna, S. H., & Girmay-Gwahid, B. (1999). Spectral characterization of water stress impact on some agricultural crops: III. Studies on sudan grass and other different crops using handheld radiometer. In G. Cecchi, E. T. Engman, & E. Zilioli (Eds.), Remote sensing for earth science, ocean, and sea ice applications, Florence, Italy (pp. 154–166). Bellingham: SPIE.Google Scholar
  151. Shell, C. (2002). Airborn high-resolution digital, visible, infra-red and thermal sensing. In R. H. Bewley & W. Raczkowski (Eds.), Aerial archaeology: developing future practice (pp. 181–195). Amsterdam: Ios.Google Scholar
  152. Shennan, I., & Donoghue, D. N. M. (1992). Remote sensing in archaeological research. In A. M. Pollard (Ed.), New developments in archaeological science. A joint symposium of the royal society and the British Academy (pp. 223–232). Oxford: Oxford University Press.Google Scholar
  153. Shortis, M. R., & Beyer, H. A. (1997). Calibration stability of the Kodak DCS420 and 460 cameras. In S. F. El-Hakim (Ed.), Videometrics V, San Diego, CA, USA (pp. 94–105). Bellingham: SPIE.Google Scholar
  154. Sigernes, F., Holmes, J. M., Dyrland, M., Lorentzen, D. A., Svenøe, T., Heia, K., et al. (2008). Sensitivity calibration of digital colour cameras for auroral imaging. Optics Express, 16, 15623–15632.Google Scholar
  155. Sinclair, T. R., Schreiber, M. M., & Hoffer, R. M. (1973). Diffuse reflectance hypothesis for the pathway of solar radiation through leaves. Agronomy Journal, 65, 276–283.Google Scholar
  156. Slater, J. C., & Frank, N. H. (1974). Electromagnetism. New York: Dover Publications.Google Scholar
  157. Slaton, M. R., Hunt, E. R., Jr., & Smith, W. K. (2001). Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany, 88, 278–284.Google Scholar
  158. Solomon, E. P., Berg, L. R., & Martin, D. W. (2005). Biology, seventh international student ed. London: Thomson.Google Scholar
  159. Stow, D., Hope, A., Richardson, D., Chen, D., Garrison, C., & Service, D. (2000). Potential of colour- infrared digital camera imagery for inventory and mapping of alien plant invasions in South African Shrublands. International Journal of Remote Sensing, 21, 2965–2970.Google Scholar
  160. Strandberg, C. H. (1967). Photoarchaeology. Photogrammetric Engineering, 33, 1152–1157.Google Scholar
  161. Summy, K. R., Little, C. R., Mazariegos, R. A., Everitt, J. H., Davis, M. R., French, J. V., et al. (2003). Detecting stress in glasshouse plants using color infrared imagery: a potential new application for remote sensing. Subtropical Plant Science, 55, 51–58.Google Scholar
  162. Tahahoto, H., Sogawa, K., Watanabe, T., Higuchi, H. (1991). Spectral reflectivity of the crop leaves damaged by cnaphalocrocis medinalis and spodoptera litura. In Proceedings of the 12th Asian conference on remote sensing, Singapore (pp. 261–266). Singapore: Asian Association on Remote Sensing.Google Scholar
  163. Tartaglia, L. J. (1977). Infrared archaeological reconnaissance. In T. R. Lyons & R. K. Hitchcock (Eds.), Aerial remote sensing techniques in archaeology (pp. 35–48). Albuquerque: National Park Service.Google Scholar
  164. Thomas, J.R., & Oerther, G. F. (1977). Estimation of crop conditions and sugar cane yields using photography. In American society of sugar cane technology proceedings, (pp. 93–99).Google Scholar
  165. Totterdell, C. J., & Rains, A. B. (1973). Plant reflectance and colour infrared photography. Journal of Applied Ecology, 10, 401–407.Google Scholar
  166. Toyoda, K. (2006). Digital still cameras at a glance. In J. Nakamura (Ed.), Image sensors and signal processing for digital still cameras (pp. 1–19). Boca Raton: Taylor & Francis.Google Scholar
  167. van de Wiele, F. (1976). Photodiode quantum efficiency. In P. G. Jespers, F. Van de Wiele, & M. H. White (Eds.), Solid state imaging. Proceedings of the NATO advanced study institute on solid state imaging, Louvain-la-Neuve, Belgium (pp. 47–90). Leyden: Noordhoff.Google Scholar
  168. Verhoeven, G. J. J. (2007). Becoming a NIR-sensitive aerial archaeologist. In C. Neale, M. Owe, & G. D’Urso (Eds.), Remote sensing for agriculture, ecosystems, and hydrology IX, Florence, Italy (pp. 333–345). Bellingham: SPIE.Google Scholar
  169. Verhoeven, G. J. J. (2008). Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. Journal of Archaeological Science, 35, 3087–3100.Google Scholar
  170. Verhoeven, G. J. J. (2010). It’s all about the format—unleashing the power of RAW aerial photography. International Journal of Remote Sensing, 31, 2009–2042.Google Scholar
  171. Verhoeven, G. J. J., & De Vliegher, B. M. (2004). Oblique aerial photography in a GIS environment for geo-archaeological research—a case study: the Potenza Valley survey. In R. Goossens (Ed.), Remote sensing in transition. Proceedings of the 23rd symposium of the European association of remote sensing laboratories, Ghent, Belgium (pp. 427–434). Rotterdam: Millpress.Google Scholar
  172. Verhoeven, G. J. J., & Loenders, J. (2006). Looking through black-tinted glasses—a remotely controlled infrared eye in the sky. In S. Campana & M. Forte (Eds.), From space to place. 2nd International Conference on Remote Sensing in Archaeology. Proceedings of the 2nd International Workshop, CNR, Rome, Italy (pp. 73–79). Oxford: Archaeopress.Google Scholar
  173. Verhoeven, G. J. J., & Vermeulen, F. (2004). The Potenza Valley Survey: towards an explanation of the settlement patterns through the combined use of GIS and different survey techniques. In M. der Stadt Wien, E. Refereat Kulturelles, & W. Stadtarchäologie (Eds.), Enter the past. The E-way into the four dimensions of cultural heritage. CAA 2003. Computer applications and quantitative methods in archaeology, Proceedings of the 31st Conference, Vienna, Austria (pp. 312–316). Oxford: Archaeopress.Google Scholar
  174. Verhoeven, G. J. J., Loenders, J., Vermeulen, F., & Docter, R. (2009a). Helikite aerial photography (HAP)—a versatile means of unmanned, radio-controlled, low-altitude aerial archaeology. Archaeological Prospection, 16, 125–138.Google Scholar
  175. Verhoeven, G. J. J., Smet, P. F., Poelman, D., & Vermeulen, F. (2009b). Spectral characterisation of a digital still camera’s NIR-modification to enhance archaeological observation. IEEE Transactions on Geoscience and Remote Sensing, 47, 3456–3468.Google Scholar
  176. Vermeulen, F. (2002a). The Potenza Valley Survey (Marche). In P. Attema, G.-J. Burgers, E. van Joolen, M. van Leusen, B. Mater (Eds.), New developments in Italian landscape archaeology. Theory and methodology of field survey. Land evaluation and landscape perception. Pottery production and distribution. Proceedings of a three-day conference held at the University of Groningen, April 13–15, 2000 (pp. 104–106). Oxford: ArchaeopressGoogle Scholar
  177. Vermeulen, F. (2002b). Uit de lucht gegrepen: de bijdrage van archeologische luchtfotografie in het “Potenza Survey” project. Tijdschrift voor Mediterrane Archeologie, 26, 33–42.Google Scholar
  178. Vermeulen, F. (2004). Fotografia aerea finalizzata nelle Marche centrali: un progetto integrato. Archeologia Aerea. Studi di Aerotopografia Archeologica, 1, 91–118.Google Scholar
  179. Vermeulen, F., & Boullart, C. (2001). The potenza valley survey: preliminary report on field campaign 2000. Babesch, 76, 1–18.Google Scholar
  180. Vermeulen, F., & Verhoeven, G. J. J. (2004). The contribution of aerial photography and field survey to the study of early urbanization in Picenum. Journal of Roman Archaeology, 17, 57–82.Google Scholar
  181. Vermeulen, F., & Verhoeven, G. J. J. (2006). An integrated survey of roman urbanization at Potentia, Central Italy. Journal of Field Archaeology, 31, 395–410.Google Scholar
  182. Vermeulen, F., Monsieur, P., & Boullart, C. (2002). The potenza valley survey: preliminary report on field campaign 2001. Babesch, 77, 49–71.Google Scholar
  183. Vermeulen, F., Verhoeven, G. J. J., & Semey, J. (2005). The integration of aerial photography and GIS in the Potenza valley survey. In J. Bourgeois & M. Meganck (Eds.), Aerial photography and archaeology 2003. A century of information, Ghent, Belgium (pp. 371–382). Ghent: Academia.Google Scholar
  184. Webster, G., & Hobley, B. (1964). Aerial reconnaissance over the warwickshire avon. Archaeological Journal, 121, 1–22.Google Scholar
  185. Wells, G., & Holz, R. K. (1985). Photography beyond the red. In R. K. Holz (Ed.), The surveillant science: Remote sensing of the environment (pp. 184–195). New York: Wiley.Google Scholar
  186. Wiegand, C. L., Gausman, H. W., & Allen, W. A. (1972). Physiological factors and optical parameters as bases of vegetation discrimination and stress analysis. In Operational remote sensing, Houston, Texas (pp. 82–102). Falls Church: American Society of Photogrammetry.Google Scholar
  187. Wilson, D. R. (1982). Air photo interpretation for archaeologists (2nd ed.). Stroud: Tempus.Google Scholar
  188. Woolley, J. T. (1971). Reflectance and transmittance of light by leaves. Plant Physiology, 47, 656–662.Google Scholar
  189. Young, A., & Britton, G. (1990). Carotenoids and stress. In R. Hobbs & H. Mooney (Eds.), Stress responses in plants: adaptation and acclimation mechanisms (pp. 87–112). New York: Springer.Google Scholar
  190. Zwiggelaar, R. (1998). A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Protection, 17, 189–206.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Arts and Philosophy, Department of ArchaeologyGhent University (UGent)GhentBelgium
  2. 2.LBI for Archaeological Prospection and Virtual ArchaeologyLudwig Boltzmann Gesellschaft GmbHViennaAustria

Personalised recommendations