Skip to main content
Log in

Sampling Design and Inferential Bias in Archaeological Soil Chemistry

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

The ways and extent to which sampling design influences data collection and archaeological inference is a constant concern for archaeologists. Yet, spatial analyses based on anthrosol chemistry have been less willing to concede this problem and to explore potential solutions. This article reviews the recent literature on soil sampling for spatial studies and then uses an example from prehispanic Honduras to examine how both quantitative and qualitative interpretations of soil chemical patterns can shift when sampling design changes. The results of this study suggest that the principal challenges to selecting an appropriate sampling design are in determining the sample size and density, as well as recognizing and adequately dealing with variation in the soil properties being measured. These findings provide cautionary tales for spatial studies aimed at using soil chemical data to infer activity patterns in the archaeological record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkinson, P. M. (1996). Optimal sampling strategies for raster-based geographical information systems. Global Ecology and Biogeography Letters, 5(4/5), 271–280.

    Article  Google Scholar 

  • Bethell, P., & Máté, I. (1989). The use of soil phosphate analysis in archaeology: A critique. In J. Henderson (Ed.), Scientific analysis in archaeology and its interpretation, institute of archaeology (pp. 1–29). Los Angeles: University of California.

    Google Scholar 

  • Binford, L. R. (1964). A consideration of archaeological research design. American Antiquity, 29(4), 425–441.

    Article  Google Scholar 

  • Boekhold, E. E., & Van der Zee, S. (1992). Significance of soil chemical heterogeneity for spatial behavior of cadmium in field soils. Soil Science Society of America Journal, 56(3), 747–754.

    Google Scholar 

  • Burgesse, T. M., Webster, R., & McBratney, A. B. (1981). Optimal interpolation and isarithmic mapping of soil properties: IV, sampling strategy. Journal of Soil Science, 32(3), 643–659.

    Article  Google Scholar 

  • Burton, J. H., & Simon, A. W. (1993). Acid extraction as a simple and inexpensive method for compositional characterization of archeological ceramics. American Antiquity, 58(1), 45–59.

    Article  Google Scholar 

  • Campbell, J. B., & Edmonds, W. J. (1984). The missing geographic dimension to soil taxonomy. Annals of the Association of American Geographers, 74(1), 83–97.

    Article  Google Scholar 

  • Casteel, R. W. (1970). Core and column sampling. American Antiquity, 35(4), 465–467.

    Article  Google Scholar 

  • Champion, T., Cuming, P., & Shennan, S. J. (1996). Planning for the past, vol. 3. Decision-making and field methods in archaeological evaluation. London: English Heritage and University of Southampton.

    Google Scholar 

  • Cook, S. R., Clarke, A. S., & Fulford, M. G. (2005). Soil geochemistry and detection of early roman precious metal and copper alloy working at the roman town of calleva atrebatum (Silchester, Hampshire, UK). Journal of Archaeological Science, 32(5), 805–812.

    Article  Google Scholar 

  • Crowther, J. (1997). Soil phosphate surveys: critical approaches to sampling, analysis and interpretation. Archaeological Prospection, 4(2), 93–102.

    Article  Google Scholar 

  • Entwistle, J. A., Abrahams, P. W., & Dodgshon, R. A. (2000). The geoarchaeological significance and spatial variability of a range of physical and chemical soil properties from a former habitation site, isle of skye. Journal of Archaeological Science, 27(4), 287–303.

    Article  Google Scholar 

  • Entwistle, J. A., McCaffrey, K. J. W., & Dodgshon, R. A. (2007). Geostatistical and multi-elemental analysis of soils to interpret land-use history in the Hebrides, Scotland. Geoarchaeology: An International Journal, 22(4), 391–415.

    Article  Google Scholar 

  • Fisher, E., Thornton, B., Hudson, G., & Edwards, A. C. (1998). The variability in total and extractable soil phosphorus under a grazed pasture. Plant and Soil, 203(2), 249–255.

    Article  Google Scholar 

  • Goldberg, P., & Macphail, R. I. (2006). Practical and theoretical geoarchaeology. Malden: Blackwell Publishing.

    Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89, 1–45.

    Article  Google Scholar 

  • Hammond, L. C., Pritchett, W. L., & Chew, V. (1958). Soil sampling in relation to soil heterogeneity. Soil Science Society of America Proceedings, 22(6), 548–552.

    Google Scholar 

  • Haslam, R., & Tibbett, M. (2004). Sampling and analyzing metals in soils for archaeological prospection: a critique. Geoarchaeology, 19(8), 731–751.

    Article  Google Scholar 

  • Heizer, R. F. (1949). A manual of archaeological field methods. Millbrae: National Press.

    Google Scholar 

  • Hester, T. R., Shafer, H. J., & Feder, K. L. (1997). Field methods in archaeology (7th ed.). Mountain View: Mayfield.

    Google Scholar 

  • Holliday, V. T. (2004). Soils in archaeological research. Oxford: Oxford University Press.

    Google Scholar 

  • Holliday, V. T., & Gartner, W. G. (2007). Methods of soil p analysis in archaeology. Journal of Archaeological Science, 34(2), 301–333.

    Article  Google Scholar 

  • Howell, T. L. (1993). Evaluating the utility of auger testing as a predictor of subsurface artifact density. Journal of Field Archaeology, 20(4), 475–484.

    Article  Google Scholar 

  • Hutson, S. R., & Terry, R. E. (2006). Recovering social and cultural dynamics from plaster floors: chemical analyses at ancient chunchucmil, Yucatan, Mexico. Journal of Archaeological Science, 33(3), 391–404.

    Article  Google Scholar 

  • Kintigh, K. W. (1988). The effectiveness of subsurface testing: a simulation approach. American Antiquity, 53(4), 686–707.

    Article  Google Scholar 

  • Kitanidis, P. K. (1997). Introduction to geostatistics: applications in hydrogeology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kitanidis, P. K., & Shen, K.-F. (1996). Geostatistical interpolation of chemical concentration. Advances in Water Resources, 19(6), 369–378.

    Article  Google Scholar 

  • Kozar, B., Lawrence, R., & Long, D. S. (2002). Soil phosphorus and potassium mapping using a spatial correlation model incorporating terrain slope gradient. Precision Agriculture, 3(4), 407–412.

    Article  Google Scholar 

  • Krakker, J. J., Shott, M. J., & Welch, P. D. (1983). Design and evaluation of shovel-test sampling in regional archaeological survey. Journal of Field Archaeology, 10(4), 469–480.

    Article  Google Scholar 

  • Lark, R. M. (2003). Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. European Journal of Soil Science, 54(1), 187–202.

    Article  Google Scholar 

  • Lewis, R. J., Foss, J. E., Morris, M. W., Timpson, M. E., & Stiles, C. A. (1993). Trace element analysis in pedo-archaeology studies. In J. E. Foss, M. E. Timpson, & M. W. Morris (Eds.), Proceedings of the 1st international conference on pedo-archaeology, special publication 93-03 (pp. 81–88). Knoxville: University of Tennessee Agricultural Experiment Station.

    Google Scholar 

  • Lightfoot, K. G. (1986). Regional surveys in the eastern United States: the strengths and weaknesses of implementing subsurface testing programs. American Antiquity, 51(3), 484–504.

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.

    Google Scholar 

  • Lloyd, C. D., & Atkinson, P. M. (2004). Archaeology and geostatistics. Journal of Archaeological Science, 31(2), 151–165.

    Article  Google Scholar 

  • Marshall, A. (2001). Functional analysis of settlement areas: prospection over a defended enclosure of iron age date at the bowsings, guiting power, Gloucestershire, UK. Archaeological Prospection, 8(2), 79–106.

    Article  Google Scholar 

  • McBratney, A. B., & Webster, R. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables, II: program and examples. Computers and Geosciences, 7(4), 335–365.

    Article  Google Scholar 

  • Mehlich, A. (1978). New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese, and zinc. Communications in Soil Science and Plant Analysis, 9(6), 477–492.

    Article  Google Scholar 

  • Meul, M., & Van Meirvenne, M. (2003). Kriging soil texture under different types of nonstationarity. Geoderma, 112(3–4), 217–233.

    Article  Google Scholar 

  • Middleton, W. D., & Price, T. D. (1996). Identification of activity areas by multi-elemental characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. Journal of Archaeological Science, 23(5), 673–687.

    Article  Google Scholar 

  • Nance, J. D., & Ball, B. F. (1986). No surprises? The reliability and validity of test pit sampling. American Antiquity, 51(3), 457–483.

    Article  Google Scholar 

  • Oonk, S., Slomp, C. P., & Huisman, D. J. (2009). Geochemistry as an aid in archaeological prospection and site interpretation: current issues and research directions. Archaeological Prospection, 16, 35–51.

    Article  Google Scholar 

  • Orton, C. (2000). Sampling in archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Parnell, J. J., Terry, R. E., & Golden, C. (2001). Using in-field phosphate testing to rapidly identify middens at Piedras Negras, Guatemala. Geoarchaeology: An International Journal, 16(8), 855–873.

    Article  Google Scholar 

  • Parnell, J. J., Terry, R. E., & Nelson, Z. (2002). Soil chemical analysis applied as an interpretive tool for ancient human activities in Piedras Negras, Guatemala. Journal of Archaeological Science, 29(4), 379–404.

    Article  Google Scholar 

  • Price, J. C., Hunter, R. G., & McMichael, E. V. (1964). Core drilling in an archaeological site. American Antiquity, 30(2), 219–222.

    Article  Google Scholar 

  • Redman, C. L. (1987). Surface collection, sampling, and research design: a retrospective. American Antiquity, 52(2), 249–265.

    Article  Google Scholar 

  • Reed, N. A., Bennett, J. W., & Porter, J. W. (1968). Solid core drilling of monk’s mound: technique and findings. American Antiquity, 33(2), 137–148.

    Article  Google Scholar 

  • Robertson, G. P., Crum, J. R., & Ellis, B. G. (1993). The spatial variability of soil resources following long-term disturbance. Oecologia, 96(4), 451–456.

    Article  Google Scholar 

  • Shott, M. J. (1985). Shovel-test sampling as a site discovery technique: a case study from Michigan. Archaeological Prospection, 12(4), 457–468.

    Google Scholar 

  • Shott, M. J. (1987). Feature discovery and the sampling requirements of archaeological evaluations. Journal of Field Archaeology, 14(3), 359–371.

    Article  Google Scholar 

  • Shott, M. J. (1989). Shovel-test sampling in archaeological survey: comments on nance and ball, and lightfoot. American Antiquity, 54(2), 396–404.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochrane, W. G. (1980). Statistical methods (7th ed.). Ames: Iowa State University Press.

    Google Scholar 

  • Stein, J. K. (1986). Coring archaeological sites. American Antiquity, 51(3), 505–527.

    Article  Google Scholar 

  • Stein, A., & Ettema, C. (2003). An overview of spatial sampling procedures and experimental design studies for ecosystem comparisons. Agriculture, Ecosystems & Environment, 94(1), 31–47.

    Article  Google Scholar 

  • Tan, K. H. (2005). Soil sampling, preparation, and analysis (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Terry, R. E., Hardin, P. J., Houston, S. D., Nelson, S. D., Jackson, M. W., Carr, J., et al. (2000). Quantitative phosphorus measurement: a field test procedure for archaeological site analysis at Piedras Negras, Guatemala. Geoarchaeology: An International Journal, 15(2), 151–166.

    Article  Google Scholar 

  • Usowicz, B., & Kossowski, J. (2001). Spatial variation of soil moisture and sampling strategy. In J. Blahovec & M. Libra (Eds.), Proceedings of the international conference on physical methods in agriculture: Approach to precision and quality (pp. 319–323). Prague: Czech University of Agriculture.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (1990). Statistical methods in soil and land resource survey. Oxford: Oxford University Press.

    Google Scholar 

  • Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3–4), 330–336.

    Google Scholar 

  • Wells, E. C. (2003). Artisans, chiefs, and feasts: Classic period social dynamics at El Coyote, Honduras, Ph.D. dissertation, Arizona State University, Tempe.

  • Wells, E. C. (2004). Investigating activity patterns in prehispanic plazas: weak acid-extraction ICP/AES analysis of anthrosols at classic period El Coyote, Northwest Honduras. Archaeometry, 46(1), 67–84.

    Article  Google Scholar 

  • Wells, E. C. (2007). Faenas, ferias, and fiestas: Ritual finance in ancient and modern Honduras. In E. C. Wells & K. L. Davis-Salazar (Eds.), Mesoamerican ritual economy: Archaeological and ethnological perspectives (pp. 29–65). Boulder: University Press of Colorado.

    Google Scholar 

  • Wells, E. C., Novotny, C., & Hawken, J. R. (2007). Predictive modeling of soil chemical data by ICP-OES reveals the uses of ancient Mesoamerican plazas. In M. D. Glascock, R. J. Speakman, & R. S. Popelka-Filcoff (Eds.), Archaeological chemistry: Analytical techniques and archaeological interpretation (pp. 210–230). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Wells, E. C., & Terry, R. E. (2007). Introduction to the special issue: advances in geoarchaeological approaches to anthrosol chemistry, part II: activity area analysis. Geoarchaeology: An International Journal, 22(4), 387–390.

    Article  Google Scholar 

  • Wells, E. C., Terry, R. E., Hardin, P. J., Parnell, J. J., Houston, S. D., & Jackson, M. W. (2000). Chemical analyses of ancient anthrosols in residential areas at Piedras Negras, Guatemala. Journal of Archaeological Science, 27(5), 449–462.

    Article  Google Scholar 

  • Wells, E. C., & Urban, P. A. (2002). An ethnoarchaeological perspective on the material and chemical residues of communal feasting at El Coyote, Northwest Honduras. In P. Vandiver, M. Goodway, & J. Mass (Eds.), Materials issues in art and archaeology VI, MRS proceedings vol. 712 (pp. 193–198). Warrendale: Materials Research Society.

    Google Scholar 

  • Wobst, H. M. (1983). We can’t see the forest for the trees: Sampling and shapes of archaeological distributions. In J. A. Moore & A. S. Keene (Eds.), Archaeological hammers and theories (pp. 37–85). New York: Academic Press.

    Google Scholar 

  • Yfantis, E. A., Flatman, G. T., & Behar, J. V. (1987). Efficiency of kriging estimation for square, triangular, and hexagonal grids. Mathematical Geology, 19(3), 183–205.

    Article  Google Scholar 

  • Young, F. J., & Hammer, R. D. (2000). Defining geographic soil bodies by landscape position, soil taxonomy, and cluster analysis. Soil Science Society of America Journal, 64(3), 989–998.

    Google Scholar 

  • Zhang, C., Jordan, C., & Higgins, A. (2007). Using neighborhood statistics and GIS to quantify and visualize spatial variation in geochemical variables: an example using Ni concentrations in the topsoils of Northern Ireland. Geoderma, 137(3–4), 466–476.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Sandra L. López Varela, Christopher D. Dore, and Manuel R. Palacios-Fest for inviting me to participate in the original symposium in which a preliminary draft of this paper was presented at the 2006 Annual Meeting of the Society for American Archaeology in San Juan, Puerto Rico, and for all their hard work on its subsequent expansion and publication. Research at El Coyote was conducted with the permission and assistance of the Instituto Hondureño de Antropología e Historia. I am exceedingly grateful to Patricia A. Urban and Edward M. Schortman for allowing me to conduct this research and for their support throughout the project. Funding for my research was provided by the National Science Foundation (BCS-0108742) and the Wenner-Gren Foundation for Anthropological Research (GR. 6810). Soil analysis was conducted with the support and advice of James H. Burton and T. Douglas Price at the Laboratory for Archaeological Chemistry at the University of Wisconsin, Madison. López Varela, Dore, Karla L. Davis-Salazar, and three anonymous reviewers read drafts of this manuscript and provided very useful comments that helped improve the arguments in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Christian Wells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, E.C. Sampling Design and Inferential Bias in Archaeological Soil Chemistry. J Archaeol Method Theory 17, 209–230 (2010). https://doi.org/10.1007/s10816-010-9087-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-010-9087-7

Keywords

Navigation