Suboptimal trophectoderm mitochondrial DNA level is associated with delayed blastocyst development

Abstract

Purpose

To provide a comprehensive analysis of mtDNA quantity in D5 and D6 blastocysts, as well as a further insight to the origin of delayed blastocyst development.

Methods

A retrospective cohort analysis of 829 D5 and 472 D6 blastocysts from 460 patients who underwent in vitro fertilization (IVF) with next-generation sequencing (NGS)–based preimplantation genetic testing for aneuploidy (PGT-A). The quantity of trophectoderm mtDNA was extrapolated from the NGS data, followed by the analysis of mean mtDNA levels between D5 and D6 blastocysts of the same ploidy (aneuploid/euploid) and transfer outcomes (positive/negative clinical pregnancy).

Results

D5 blastocysts had significantly higher euploidy rate and clinical pregnancy rate when compared with D6 blastocysts. The proportion of blastocysts derived from patients ≧ 40 years old were similar between the D5 and D6 cohorts. When blastocysts with identical ploidy were analyzed, the D5 cohorts all had significantly higher mean mtDNA levels than their D6 counterparts. Similarly, when embryo transfers with identical outcome were analyzed, the D5 cohorts also had significantly higher mean mtDNA levels than the D6 cohorts. Trophectoderm mtDNA level was independent of maternal age and blastocyst morphology grades.

Conclusions

Our data provided further evidence D5 blastocysts contained significantly greater mtDNA quantity than D6 blastocysts, and mtDNA quantity could be a key factor that affects the development rate of blastocysts. Furthermore, one must avoid using an arbitrary threshold when incorporating mtDNA quantity into the embryo selection criteria, as the observed value may have vastly different clinical implication when blastulation rate is also considered.

This is a preview of subscription content, access via your institution.

Data availability

All data and material are available upon request.

References

  1. 1.

    Bourdon M, Pocate-Cheriet K, Finet de Bantel A, Grzegorczyk-Martin V, Amar Hoffet A, Arbo E, et al. Day 5 versus day 6 blastocyst transfers: a systematic review and meta-analysis of clinical outcomes. Hum Reprod. 2019;34:1948–64.

    PubMed  Google Scholar 

  2. 2.

    Barash OO, Ivani KA, Willman SP, Rosenbluth EM, Wachs DS, Hinckley MD, et al. Association between growth dynamics, morphological parameters, the chromosomal status of the blastocysts, and clinical outcomes in IVF PGS cycles with single embryo transfer. J Assist Reprod Genet. 2017;34:1007–16.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Irani M, O’Neill C, Palermo GD, Xu K, Zhang C, Qin X, et al. Blastocyst development rate influences implantation and live birth rates of similarly graded euploid blastocysts. Fertil Steril. 2018;110:95–102.e1.

    PubMed  Google Scholar 

  4. 4.

    Hashimoto S, Amo A, Hama S, Ito K, Nakaoka Y, Morimoto Y. Growth retardation in human blastocysts increases the incidence of abnormal spindles and decreased implantation potential after verification. Hum Reprod. 2013;28:1528–35.

    PubMed  Google Scholar 

  5. 5.

    Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel CE, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:e1005241.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–41.

    PubMed  CAS  Google Scholar 

  7. 7.

    Ravichandran K, McCaffrey C, Grifo J, Morales A, Perloe M, Munne S, et al. Mitochondrial DNA quantification as a tool for embryo viability assessment: retrospective analysis of data from single euploid blastocysts transfers. Hum Reprod. 2017;32:1282–92.

    PubMed  CAS  Google Scholar 

  8. 8.

    Fragouli E, McCaffrey C, Ravichandran K, Spath K, Grifo JA, Munné S, et al. Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: a blinded prospective non-selection study. Hum Reprod. 2017;32:2340–7.

    PubMed  CAS  Google Scholar 

  9. 9.

    Lledo B, Ortiz JA, Morales R, García-Hernández E, Ten J, Bernabeu A, et al. Comprehensive mitochondrial DNA analysis and IVF outcome. Hum Reprod Open. 2018;2018(4):hoy023.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Victor AR, Brake AJ, Tyndall JC, Griffin DK, Zouves CG, Barnes FL, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2017;107:34–42.

    PubMed  CAS  Google Scholar 

  11. 11.

    Treff NR, Zhan Y, Tao X, Olcha M, Han M, Rajchel J, et al. Levels of trophectoderm mitochondrial DNA do not predict the reproductive potential of sibling embryos. Hum Reprod. 2017;32:954–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Klimczak AM, Pacheco LE, Lewis KE, Massahi N, Richards JP, Kearns WG, et al. Embryonal mitochondrial DNA: relationship to embryo quality and transfer outcomes. J Assist Reprod Genet. 2018;35:871–7.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Barnes FL, Victor AR, Zouves CG, Viotti M. Mitochondrial DNA quantitation-making sense of contradictory reports. Hum Reprod. 2017;32:2149–50.

    PubMed  Google Scholar 

  14. 14.

    Wells D, Ravichandran K, McCaffrey C, Grifo J, Morales A, Perloe M, et al. Reply: mitochondrial DNA quantification-the devil in the detail. Hum Reprod. 2017;32:2150–1.

    PubMed  CAS  Google Scholar 

  15. 15.

    Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon Press; 1999. p. 378–88.

    Google Scholar 

  16. 16.

    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Ding J, Sidore C, Butler TJ, Wing MK, Qian Y, Meirelles O, et al. Assessing mitochondrial DNA variation and copy number in lymphocytes of ∼2,000 sardinians using tailored sequencing analysis tools. PLoS Genet. 2015;11:e1005306.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Barbuscia A, Martikainen P, Myrskylä M, Remes H, Somigliana E, Klemetti R, et al. Maternal age and risk of low birth weight and premature birth in children conceived through medically assisted reproduction. Evidence from Finnish population registers. Hum Reprod. 2020;35:212–20.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22:725–43.

    PubMed  CAS  Google Scholar 

  20. 20.

    Brown WM. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci U S A. 1980;77:3605–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Thundathil J, Filion F, Smith LC. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev. 2005;71:405–13.

    PubMed  CAS  Google Scholar 

  22. 22.

    May-Panloup P, Vignon X, Chretien MF, Heymen Y, Tamassia M, Malthiery Y, et al. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol. 2005;3:65.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Spikings EC, Alderson J, St John JC. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod. 2007;76:327–35.

    PubMed  CAS  Google Scholar 

  24. 24.

    Ho JR, Arrach N, Rhodes-Long K, Salem W, McGinnis LK, Chung K, et al. Blastulation timing is associated with differential mitochondrial content in euploid embryos. J Assist Reprod Genet. 2018;35(4):711–20.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hashimoto S, Morimoto N, Yamanaka M, Matsumoto H, Yamochi T, Goto H, et al. Quantitative and qualitative changes of mitochondrial in human preimplantation embryos. J Assist Reprod Genet. 2017;34:573–80.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.

    PubMed  Google Scholar 

  27. 27.

    Chan CC, Liu VW, Lau EY, Yeung WS, Ng EH, Ho PC. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Mol Hum Reprod. 2005;11:843–6.

    PubMed  CAS  Google Scholar 

  28. 28.

    Duran HE, Simsek-Duran F, Oehninger SC, Jones HW Jr, Castora FJ. The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertil Steril. 2011;96:384–8.

    PubMed  CAS  Google Scholar 

  29. 29.

    May-Panloup P, Chretien MF, Jacques C, Vasseur C, Malthiery Y, Reynier P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod. 2005;20:593–7.

    PubMed  CAS  Google Scholar 

  30. 30.

    Murakoshi Y, Sueoka K, Takahashi K, Sato S, Sakurai T, Tajima H, et al. Embryo developmental capability and pregnancy outcome are related to the mitochondrial DNA copy number and ooplasmic volume. J Assist Reprod Genet. 2013;30:1367–75.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7:425–9.

    PubMed  CAS  Google Scholar 

  32. 32.

    Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85:584–91.

    PubMed  CAS  Google Scholar 

  33. 33.

    Lee SE, Kim EY, Choi HY, Moon JJ, Park MJ, Lee JB, et al. Rapamycin rescues the poor developmental capacity of aged porcine oocytes. Asian-Australas J Anim Sci. 2014;27:635–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Zhang XM, Li L, Xu JJ, Wang N, Liu WJ, Lin XH, et al. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene. 2013;523:82–7.

    PubMed  CAS  Google Scholar 

  35. 35.

    Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, et al. Resveratrol protects against age-associated infertility in mice. Hum Reprod. 2013;28:707–17.

    PubMed  CAS  Google Scholar 

  36. 36.

    Sugiyama M, Kawahara-Miki R, Kawana H, Shirasuna K, Kuwayama T, Iwata H. Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows. J Reprod Dev. 2015;61:251–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Stojkovic M, Westesen K, Zakhartchenko V, Stojkovic P, Boxhammer K, Wolf E. Coenzyme Q(10) in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphosphate content of in vitro-produced bovine embryos. Biol Reprod. 1999;61:541–7.

    PubMed  CAS  Google Scholar 

  38. 38.

    Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14:887–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Zhang Y, Zhang C, Shu J, Guo J, Chang HM, Leung PCK, et al. Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: a systematic review and network meta-analysis. Hum Reprod Update. 2020;28(26):247–63.

    Google Scholar 

  40. 40.

    Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol. 2013;5:a012641.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays. 2002;24:845–9.

    PubMed  Google Scholar 

  42. 42.

    Van Blerkom J, Davis P, Lee J. ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod. 1995;10:415–24.

    PubMed  CAS  Google Scholar 

  43. 43.

    Liu H, Trimarchi J, Keefe D. Involvement of mitochondria in oxidative stress induced cell death in mouse zygotes. Biol Reprod. 2000;62:1745–53.

    PubMed  CAS  Google Scholar 

  44. 44.

    Morimoto N, Hashimoto S, Yamanaka M, Nakano T, Satoh M, Nakaoka Y, et al. Mitochondrial oxygen consumption rate of human embryos declines with maternal age. J Assist Reprod Genet. 2020;37:1815–21.

    PubMed  Google Scholar 

  45. 45.

    Simon AL, Kiehl M, Fischer E, Proctor JG, Bush MR, Givens C, et al. Pregnancy outcomes from more than 1,800 in vitro fertilization cycles with the use of 24-chromosome single-nucleotide polymorphism-based preimplantation genetic testing for aneuploidy. Fertil Steril. 2018;110:113–21.

    PubMed  Google Scholar 

  46. 46.

    Vinals Gonzalez X, Odia R, Naja R, Serhal P, Saab W, Seshadri S, et al. Euploid blastocysts implant irrespective of their morphology after NGS-(PGT-A) testing in advanced maternal age patients. J Assist Reprod Genet. 2019;36:1623–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Viotti M, Victor AR, Zouves CG, Barnes FL. Is mitochondrial DNA quantitation in blastocyst trophectoderm cells predictive of developmental competence and outcome in clinical IVF? J Assist Reprod Genet. 2017;34:1581–5.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all of the patients who participated in the present study, as well as the IVF laboratory team members at IHMED Fertility center for their assistance.

Author information

Affiliations

Authors

Contributions

Study design and coordination: Frank Shao-Ying Wu and Ni-Chung Lee

Subject recruitment: Shao-Peng Weng, Meng-Shun Shen, and Pei-Chun Ma

Data collection: Shao-Peng Weng, Meng-Shun Shen, and Po-Kuan Wu

Data analysis: Frank Shao-Ying Wu, Ni-Chung Lee, Po-Kuan Wu, and Pei-Chun Ma

Drafting of manuscript: Frank Shao-Ying Wu

Study supervision and manuscript revision: Ni-Chung Lee

Corresponding author

Correspondence to Ni-Chung Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

The study protocol was approved by the institutional review board of the National Taiwan University Hospital (IRB #201905053RIND).

Consent to participate

Not applicable due to the retrospective nature of the study.

Consent for publication

The authors transfer to Springer the publication rights and give full consent for all of the information about to be published in Journal of Assisted Reproduction and Genetics.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, F.SY., Weng, SP., Shen, MS. et al. Suboptimal trophectoderm mitochondrial DNA level is associated with delayed blastocyst development. J Assist Reprod Genet 38, 587–594 (2021). https://doi.org/10.1007/s10815-020-02045-5

Download citation

Keywords

  • Mitochondria DNA quantity
  • Day 5 blastocysts
  • Day 6 blastocysts
  • IVF
  • Blastulation rate