Skip to main content
Log in

How 1 h of abstinence improves sperm quality and increases embryo euploidy rate after PGT-A: a study on 106 sibling biopsied blastocysts

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of our study was to evaluate the influence of different ejaculatory abstinence time frames (several days versus 1 h) on semen parameters, blastocysts ploidy rate, and clinical results in assisted reproduction cycles on sibling oocytes.

Methods

This is a prospective study including 22 preimplantation genetic testing for aneuploidy (PGT-A) cycles performed between November 2015 and December 2018. Male partners with oligoastenoteratozoospermia produced two semen samples on the day of oocyte retrieval: the first one after several days of abstinence and the second, 1 h after the first one. Oocytes from each patient were divided into two groups: those in group 1 were injected with spermatozoa from the first ejaculate (N = 121) and oocytes in group 2 with spermatozoa from the second one (N = 144). Outcomes of aniline blue test, fertilization, blastocyst formation, ploidy rates, and clinical results were compared between the two groups.

Results

Semen volume resulted lower in the second sperm retrieval. Sperm concentration, motility, and morphology were similar in the two groups. A total of 106 blasotcysts were biospied. Higher blastocyst euploidy rates resulted in group 2 (43.6%) than in group 1 (27.5%). A higher percentage of mature chromatine was observed in group 2.

Conclusion

Using spermatozoa from samples with a shorter abstinence could be a simple method to select higher quality spermatozoa, reducing aneuploidy rate in blastocysts. Prospective randomized controlled trials should be performed to confirm the potential advantage of using semen samples with short abstinence period to improve the outcome of assisted reproduction cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91.

    Article  CAS  Google Scholar 

  2. Munne S, Alikani M, Tomkin G, Grifo J, Cohen J. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril. 1995;64:382–91.

    Article  CAS  Google Scholar 

  3. Munne S, Sandalinas M, Magli C, Gianaroli L, Cohen J, Warburton D. Increased rate of aneuploid embryos in young women with previous aneuploid conceptions. Prenat Diagn. 2004;24:638–43.

    Article  Google Scholar 

  4. Wilding M, Forman R, Hogewind G, Di Matteo L, Zullo F, Cappiello F, et al. Preimplantation genetic diagnosis for the treatment of failed in vitro fertilization-embryo transfer and habitual abortion. Fertil Steril. 2004;81:1302–7.

    Article  Google Scholar 

  5. Silber S, Escudero T, Lenahan K, Abdelhadi I, Kilani Z, Munne S. Chromosomal abnormalities in embryos derived from testicular sperm extraction. Fertil Steril. 2003;79:30–8.

    Article  Google Scholar 

  6. World Health Organization. Department of Reproductive Health and Research. WHO laboratory manual for the examination and processing of human semen. 5th ed. Switzerland: WHO Press; 2010. p. 10–1.

    Google Scholar 

  7. Mortimer D, Templeton AA, Lenton EA, Coleman RA. Influence of abstinence and ejaculation-to-analysis delay on semen analysis parameters of suspected infertile men. Arch Androl. 1982;8:251–6.

    Article  CAS  Google Scholar 

  8. Jørgensen N, Andersen AG, Eustache F, Irvine DS, Suominen J, Petersen JH, et al. Regional differences in semen quality in Europe. Hum Reprod. 2001;16:1012–9.

    Article  Google Scholar 

  9. Jørgensen N, Joensen UN, Jensen TK, Jensen MB, Almstrup K, Olesen IA, et al. Human semen quality in the new millennium: a prospective cross-sectional population based study of 4867 men. BMJ Open. 2012;2:e000990.

    Article  Google Scholar 

  10. Makkar G, Ng EH, Yeung WS, Ho PC. A comparative study of raw and prepared semen samples from two consecutive days. J Reprod Med. 2001;46:565–72.

    CAS  PubMed  Google Scholar 

  11. Levitas E, Lunenfeld E, Weiss N, Friger M, Har-Vardi I, Koifman A, et al. Relationship between the duration of sexual abstinence and semen quality: analysis of 9,489 semen samples. Fertil Steril. 2005;83:1680–6.

    Article  Google Scholar 

  12. Francavilla F, Barbonetti A, Necozione S, Santucci R, Cordeschi G, Macerola B, et al. Within-subject variation of seminal parameters in men with infertile marriages. Int J Androl. 2007;30:174–81.

    Article  CAS  Google Scholar 

  13. Frank J, Confino E, Friberg J, Dudkiewicz AB, Gleicher N. Effect of ejaculation frequency on sperm quality. Arch Androl. 1986;16:203–7.

    Article  CAS  Google Scholar 

  14. Levin RM, Latimore J, Wein AJ, Van Arsdalen KN. Correlation of sperm count with frequency of ejaculation. Fertil Steril. 1986;45:732–4.

    Article  CAS  Google Scholar 

  15. Tonguc E, Var T, Onalan G, Altinbas S, Tokmak A, Karakas N, et al. Comparison of the effectiveness of single versus double intrauterine insemination with three different timing regimens. Fertil Steril. 2010;94:1267–70.

    Article  Google Scholar 

  16. Lehavi O, Botchan A, Paz G, Yogev L, Kleiman SE, Yavetz H, et al. Twenty-four hours abstinence and the quality of sperm parameters. Andrologia. 2014;46:692–7.

    Article  CAS  Google Scholar 

  17. Mayorga-Torres BJ, Camargo M, Agarwal A, du Plessis SS, Cadavid ÁP, Cardona Maya WD. Influence of ejaculation frequency on seminal parameters. Reprod Biol Endocrinol. 2015;13:47.

    Article  Google Scholar 

  18. Olderid NB, Gordeladze JO, Kirkhus B, Purvis K. Human sperm characteristics during frequent ejaculation. J Reprod Fertil. 1984;71:135–40.

    Article  Google Scholar 

  19. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. 2015;13:37.

  20. Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J. Fertility, family planning, and reproductive health of U.S. women: data from the 2002 National Survey of Family Growth. Vital Health Stat. 2005;23:1–160.

    Google Scholar 

  21. Carrell DT. Epigenetics of the male gamete. Fertil Steril. 2012;97(2):267–74.

    Article  CAS  Google Scholar 

  22. Yan W, McCarrey JR. Sex chromosome inactivation in the male. Epigenetics. 2009;4(7):452–6.

    Article  CAS  Google Scholar 

  23. Loutradi KE, Tarlatzis BC, Goulis DG, Zepiridis L, Pagou T, Chatziioannou E, et al. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J Assist Reprod Genet. 2006;23:69–74.

    Article  Google Scholar 

  24. Chapuis A, Gala A, Ferrières-Hoa A, Mullet T, Bringer-Deutsch S, Vintejoux E, et al. Sperm quality and paternal age: effect on blastocyst formation and pregnancy rates. Basic Clin Androl. 2017;27:2.

    Article  Google Scholar 

  25. Ramasamy R, Chiba K, Butler P, Dolores J. Lamb Male biological clock: a critical analysis of advanced paternal age. Fertil Steril. Author manuscript; available in PMC 2016 Jul 21. Published in final edited form as: Fertil Steril. 2015;103(6):1402–6.

    Article  Google Scholar 

  26. Puscheck EE, Jeyendran RS. The impact of male factor on recurrent pregnancy loss. Curr Opin Obstet Gynecol. 2007;19:222–8.

    Article  Google Scholar 

  27. Depa-Martynow M, Kempisty B, Jagodziński PP, Pawelczyk L, Jedrzejczak P. Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol. 2012;12(1):57–72.

    Article  Google Scholar 

  28. Rogenhofer N, Dansranjavin T, Schorsch M, Spiess A, Wang H, von Schönfeldt V, et al. The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme. Hum Reprod. 2013;28(4):969–78.

    Article  CAS  Google Scholar 

  29. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13:313–27.

    Article  CAS  Google Scholar 

  30. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006;174(3):341–8.

    Article  Google Scholar 

  31. Denomme MM, White CR, Gillio-Meina C, MacDonald WA, Deroo BJ, Kidder GM, et al. Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes. Front Genet. 2012;3:129 Published online 2012 Jul 11.

    Article  CAS  Google Scholar 

  32. Francis S, Yelumalai S, Jones C, Coward K. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum Fertil (Camb). 2014;17(2):80–9.

    Article  Google Scholar 

  33. Greco E, Bono S, Ruberti A, Lobascio AM, Greco P, Biricik A, et al. Comparative genomic hybridization selection of blastocysts for repente implantation failure tretament: a pilot study. Biomed Res Int. 2014;2014:457913.

    Article  Google Scholar 

  34. Minasi MG, Fiorentino F, Ruberti A, Biricik A, Cursio E, Cotroneo E, et al. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successfull clinical approach. Hum Reprod. 2017;32(8):1770–7.

    Article  CAS  Google Scholar 

  35. Alkhayal A, San Gabriel M, Zeidan K, Alrabeeah K, Noel D, McGraw R, et al. Sperm DNA and chromatin integrity in semen samples used for intrauterine insemination. J Assist Reprod Genet. 2013;30(11):1519–24.

    Article  Google Scholar 

  36. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5:935–50.

    Article  Google Scholar 

  37. Alipour H, Van Der Horst G, Christiansen OB, Dardmeh F, Jørgensen N, Nielsen HI, et al. Improved sperm kinematics in semen samples collected after 2 h versus 4-7 days of ejaculation abstinence. Hum Reprod. 2017;32(7):1364–72.

    Article  CAS  Google Scholar 

  38. Bahadur G, Almossawi O, IIlahibuccus A, Al-Habib A, Okolo S. Factors leading to pregnancies in stimulated intrauterine insemination cycles and the use of consecutive ejaculations within a small clinic environment. J Obstet Gynaecol India. 2016;66(Suppl 1):513–20.

    Article  Google Scholar 

  39. Sugiyam R, Nakagawa K, Nishi Y, Sugiyama R, Shirai A, Inoue M. Improvement of sperm motility by short-interval sequential ejaculation in oligoasthenozoospermic patients. Arch Med Sci. 2008;4:438–42.

    Google Scholar 

  40. Bar-Hava I, Perri T, Ashkenazi J, Shelef M, Ben-Rafael Z, Orvieto R. The rationale for requesting a second consecutive sperm ejaculate for assisted reproductive technology. Gynecol Endocrinol. 2000;14(6):433–6.

    Article  CAS  Google Scholar 

  41. De Jonge C, LaFromboise M, Bosmans E, Ombelet W, Cox A, Nijs M. Influence of the abstinence period on human sperm quality. Fertil Steril. 2004;82(1):57–65.

    Article  Google Scholar 

  42. Asmarinah, Syauqy A, Umar LA, Lestari SW, Mansyur E, Hestiantoro A, et al. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program. Syst Biol Reprod Med. 2016;62(5):309–16.

    Article  CAS  Google Scholar 

  43. Hammadeh ME, al-Hasani S, Stieber M, Rosenbaum P, Küpker D, Diedrich K, et al. The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum Reprod. 1996;11(11):2468–71.

    Article  CAS  Google Scholar 

  44. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  Google Scholar 

  45. Shubhashree U, Sherine EM, Sujith RS, Dayanidhi K, Vikram JS, D’Souza F, et al. Sperm chromatin immaturity observed in short abstinence ejaculates affects DNA integrity and longevity in vitro. Plos One. 2016.

  46. Gill K, Rosiak A, Gaczarzewicz D, Jakubik J, Kurzawa R, Kazienko A, et al. The effect of human sperm chromatin maturity on ICSI outcomes. Hum Cell. 2018;31(3):220–31.

    Article  Google Scholar 

  47. Björndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16(1):23–9.

    Article  Google Scholar 

  48. Falcone T, Hurd WT, editors. Clinical reproductive medicine and surgery: a practical guide. New York: Springer Sciences; 2013. p. 31–42.

    Book  Google Scholar 

  49. Rivera-Montes AM, Rivera-Gallegos A, Rodríguez-Villasana E, Juárez-Bengoa A, Díaz-Pérez Mde L, Hernández-Valencia M. Estimate of the variability in the evaluation of semen analysis. Ginecol Obstet Mex. 2013;81(11):639–44.

    PubMed  Google Scholar 

  50. Turner TT. On the epididymis and its role in the development of the fertile ejaculate. J Androl. 1995;16(4):292–8 Review.

    CAS  PubMed  Google Scholar 

  51. Sullivan R, Mieusset R. The human epididymis: its function in sperm maturation. Hum Reprod Update. 2016;22(5):574–87.

    Article  CAS  Google Scholar 

  52. Tur-Kaspa I, Maor Y, Levran D, Yonish M, Mashiach S, Dor J. How often should infertile men have intercourse to achieve conception? Fertil Steril. 1994;62(2):370–5.

    Article  CAS  Google Scholar 

  53. du Plessis SS, McAllister DA, Luu A, Savia J, Agarwal A, Lampiao F. Effects of H(2)O(2) exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia. 2010;42(3):206–10.

    Article  Google Scholar 

  54. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.

    CAS  PubMed  Google Scholar 

  55. Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-specific epigenetic information. Gene. 2005;345(2):139–53.

    Article  CAS  Google Scholar 

  56. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006;174(3):341–8.

    Article  Google Scholar 

  57. Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction. 2012;143(6):727–34.

    Article  CAS  Google Scholar 

  58. Marchetti F, Lowe X, Bishop J, Wyrobek AJ. Absence of selection against aneuploid mouse sperm at fertilization. Biol Reprod. 1999;61(4):948–54.

    Article  CAS  Google Scholar 

  59. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav. 2011;59(3):306–14.

    Article  Google Scholar 

  60. Denomme MM, McCallie BR, Parks JC, Booher K, Schoolcraft WB, Katz-Jaffe MG. Inheritance of epigenetic dysregulation from male factor infertility has a direct impact on reproductive potential. Fertil Steril. 2018;110(3):419–428.e1.

    Article  Google Scholar 

  61. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26(9):2558–69.

    Article  CAS  Google Scholar 

  62. Tüttelmann F, Ruckert C, Röpke A. Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet. 2018;30(1):12–20.

    PubMed  PubMed Central  Google Scholar 

  63. Kosova G, Scott NM, Niederberger C, Prins GS, Ober C. Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet. 2012;90(6):950–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomena Scarselli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarselli, F., Cursio, E., Muzzì, S. et al. How 1 h of abstinence improves sperm quality and increases embryo euploidy rate after PGT-A: a study on 106 sibling biopsied blastocysts. J Assist Reprod Genet 36, 1591–1597 (2019). https://doi.org/10.1007/s10815-019-01533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01533-7

Keywords

Navigation