Skip to main content
Log in

Lower follicular n-3 polyunsaturated fatty acid levels are associated with a better response to ovarian stimulation

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objectives

To analyze in detail the fatty acid (FA) composition of follicular fluid (FF) from two-sized follicles at oocyte retrieval and to determine associations of the FAs from large follicles with the woman’s age and the response to ovarian stimulation.

Design

Observational study.

Setting

University and fertility clinic.

Patients

Sixty-four women (age 19–46), consisting of unfertile patients and oocyte donors, undergoing controlled ovarian stimulation.

Interventions

None.

Main outcome measure(s)

FF from small (< 12 mm) and large (≥ 18 mm) follicles was collected at oocyte retrieval. FAs by gas chromatography-flame ionization detection.

Result

Thirty-two FAs with chain lengths ranging from 14 to 25 carbons were identified. There was a readjustment in FA distribution as follicle size increased, raising very long-chain saturated FAs, nervonic (24:1n-9), arachidonic (20:4n-6), and n-3 polyunsaturated FAs (PUFA, P < 0.001), the latter mainly due to an increase in docosahexaenoic acid (22:6n-3, DHA). In large follicles, double bond and peroxidizability indices and total n-3 PUFA, particularly DHA, correlated positively with the woman’s age and negatively with the number of total and mature oocytes, total and top-quality embryos, and fertilization rate.

Conclusions

We have described 32 FAs in ovarian FF, of which 16 changed their distribution with follicle size. The results also indicate that lower n-3 PUFA levels in large follicles, which are associated with younger women, predict a better response to ovarian stimulation based on the recovery of total and mature oocytes, total and top-quality embryos, and fertilization rate per cycle.

Key message

The fatty acid profile of ovarian FF changes as the follicle grows and lower n-3 PUFA levels in large follicles, associated with younger women, predict a better response to ovarian stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ESHRE Capri Workshop Group. A prognosis-based approach to infertility: understanding the role of time. Hum Reprod. 2017;32:1556–9.

    Article  Google Scholar 

  2. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9:35–48.

    Article  CAS  PubMed  Google Scholar 

  3. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47:147–55 Review.

    Article  CAS  PubMed  Google Scholar 

  4. Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod. 2007;77:190–201.

    Article  CAS  PubMed  Google Scholar 

  5. Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, et al. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95:1970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valckx SD, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13. https://doi.org/10.1186/1477-7827-12-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soares SR, Troncoso C, Bosch E, Serra V, Simón C, Remohí J, et al. Age and uterine receptiveness: predicting the outcome of oocyte donation cycles. J Clin Endocrinol Metab. 2005;90:4399–404.

    Article  CAS  PubMed  Google Scholar 

  8. Faul F, Erdfelder E, Lang AG, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  9. ASEBIR. Criterios ASEBIR de valoración morfológica de oocitos, embriones tempranos y blastocistos humanos. Cuadernos de Embriología Clínica. 3rd ed. Glóbalo, Agencia Creativa Digital, Madrid; 2015. ISSN: 1888–8011.

  10. Lepage, Roy CC. Direct transesterification of all classes of lipids in one step reaction. J Lipid Res. 1986;27:114–20.

    CAS  PubMed  Google Scholar 

  11. Shaaker M, Rahimipour A, Nouri M, Khanaki K, Darabi M, Farzadi L, et al. Fatty acid composition of human follicular fluid phospholipids and fertilization rate in assisted reproductive techniques. Iran Biomed J. 2012;16:162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pantasri T, Wu LL, Hull ML, Sullivan TR, Barry M, Norman RJ, et al. Distinct localisation of lipids in the ovarian follicular environment. Reprod Fertil Dev. 2015;27:593. https://doi.org/10.1071/RD14321.

    Article  CAS  PubMed  Google Scholar 

  13. Warzych E, Pawlak P, Pszczola M, Cieslak A, Madeja ZE, Lechniak D. Interactions of bovine oocytes with follicular elements with respect to lipid metabolism. Anim Sci J. 2017;55:1491–7.

    Article  CAS  Google Scholar 

  14. Homa ST, Brown CA. Changes in linoleic acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. J Reprod Fertil. 1992;94:153–60.

    Article  CAS  PubMed  Google Scholar 

  15. Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139:979–88.

    Article  CAS  PubMed  Google Scholar 

  16. Ghaffarilaleh V, Fouladi-Nashta A, Paramio MT. Effect of α-linolenic acid on oocyte maturation and embryo development of prepubertal sheep oocytes. Theriogenology. 2014;82:686–96.

    Article  CAS  PubMed  Google Scholar 

  17. Nonogaki T, Noda Y, Goto Y, Kishi J, Mori T. Developmental blockage of mouse embryos caused by fatty acids. J Assist Reprod Genet. 1994;11:482–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ciepiela P, Bączkowski T, Drozd A, Kazienko A, Stachowska E, Kurzawa R. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization--a prospective analysis of follicular fluid and a matched oocyte in a 'one follicle--one retrieved oocyte--one resulting embryo' investigational setting. PLoS One. 2015;10:e0119087. https://doi.org/10.1371/journal.pone.0119087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick AZ, Ishai D, et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004;82:1171–6.

    Article  CAS  PubMed  Google Scholar 

  20. Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A. 2011;108:1462–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Espey LL, Stein VI, Dumitrescu J. Survey of antiinflammatory agents and related drugs as inhibitors of ovulation in the rabbit. Fertil Steril. 1982;38:238–47.

    Article  CAS  PubMed  Google Scholar 

  22. Bolton-Smith C, Woodward M, Tavendale R. Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. Eur J Clin Nutr. 1997;51:619–24.

    Article  CAS  PubMed  Google Scholar 

  23. Crowe FL, Skeaff CM, Green TJ, Gray AR. Serum n-3 long-chain PUFA differ by sex and age in a population-based survey of New Zealand adolescents and adults. Br J Nutr. 2008;99:168–74.

    Article  CAS  PubMed  Google Scholar 

  24. Walker CG, Browning LM, Mander AP, Madden J, West AL, Calder PC, et al. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans. Br J Nutr. 2014;111:679–89.

    Article  CAS  PubMed  Google Scholar 

  25. Borsonelo EC, Galduróz JCF. The role of polyunsaturated fatty acids (PUFAs) in development, aging and substance abuse disorders: review and propositions. Prostaglandins Leukot Essent Fatty Acids. 2008;78:237–45.

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Kang JX, Leaf A. Differential effects of various eicosanoids on the production or prevention of arrhythmias in cultured neonatal rat cardiac myocytes. Prostaglandins. 1997;54:511–30.

    Article  CAS  PubMed  Google Scholar 

  27. McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24:59–67.

    Article  CAS  PubMed  Google Scholar 

  28. Jové M, Naudí A, Gambini J, Borras C, Cabré R, Portero-Otín M, et al. A stress-resistant Lipidomic signature confers extreme longevity to humans. J Gerontol A Biol Sci Med Sci. 2017;72:30–7.

  29. Otsuka R, Kato Y, Imai T, Ando F, Shimokata H. Higher serum EPA or DHA, and lower ARA compositions with age independent fatty acid intake in Japanese aged 40 to 79. Lipids. 2013;48:719–27.

    Article  CAS  PubMed  Google Scholar 

  30. Otsuka R, Kato Y, Imai T, Ando F, Shimokata H. Secular trend of serum docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid concentrations among Japanese. A 4- and13-year descriptive epidemiologic study. Prostaglandins Leukot Essent Fatty Acids. 2015;94:35–42.

    Article  CAS  PubMed  Google Scholar 

  31. Rajalahti T, Lin C, Mjøs SA, Kvalheim OM. Changes in serum fatty acid and lipoprotein subclass concentrations from prepuberty to adulthood and during aging. Metabolomics. 2016;12:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Risé P, Tragni E, Ghezzi S, Agostoni C, Marangoni F, Poli A, et al. IDEFICS consortium., CHECK group. Different patterns characterize omega 6 and omega 3 long chain polyunsaturated fatty acid levels in blood from Italian infants, children, adults and elderly. Prostaglandins Leukot Essent Fatty Acids. 2013;89:215–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by the “PN de I+D+I” of the Spanish Ministry of Science and Innovation, “ISCIII-Subdirección General de Evaluación y Fomento de la Investigación” and FEDER (ref. FIS/FEDER PI11/02559), University of the Basque Country UPV/EHU (ref. GIU16/62), and the Basque Government (Department of Education, Universities and Research, predoctoral grant to IP, and Department of Development, Economy and Competitiveness, SPRI, ref. IG-2013 0001214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Begoña Ruiz-Larrea.

Ethics declarations

Ethical approval

The Ethics Committee of the University UPV/EHU (Ethics Committee for Research involving Human Subjects, CEISH) approved the human subject protocol (CEISH/96/2011/RUIZLARREA), and the study was performed according to the UPV/EHU and IVI-RMA Bilbao agreement, Ref. 2012/01. The project complies with the Spanish Law of Assisted Reproductive Technologies (14/2006). Written informed consent was obtained from all trial subjects for participation in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Sanz, JI., Pérez-Ruiz, I., Meijide, S. et al. Lower follicular n-3 polyunsaturated fatty acid levels are associated with a better response to ovarian stimulation. J Assist Reprod Genet 36, 473–482 (2019). https://doi.org/10.1007/s10815-018-1384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1384-1

Keywords

Navigation