Skip to main content
Log in

Chromosome constitution of equal-sized three-cell embryos using next-generation sequencing technology

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the chromosome constitution of equal-sized three-cell embryo.

Methods

We determined the chromosome constitution of 105 blastomeres from 35 embryos using multiple annealing and looping-based amplification cycles (MALBAC) together with NGS sequencing technology. Chromosomal copy number variation (CNV) analysis was successfully performed in 27 embryos. We also analyzed radius, perimeter, area, and volume of each blastomere to explore the possibility of selecting the normal embryos.

Results

Majority of the embryos (77.8%, 21/27) studied were mosaic or aneuploid, and only 22.2% (6/27) had normal chromosome numbers. The aneuploid chromosomes spread across all chromosomes and the most frequent aneuploidies were for chromosomes 1, 16, and 18 followed by 13, 19, and 21. Statistical analyses showed no significant difference between euploid and aneuploid embryos regarding radius, perimeter, area, and volume of their blastomeres.

Conclusions

Our results showed that majority of the equal-sized three-cell embryos were chromosomally abnormal and could not be distinguished by morphology observation, so they should be given lower priority at selection for transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alpha Scientists in Reproductive M, Embryology ESIGo. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Article  Google Scholar 

  2. Prados FJ, Debrock S, Lemmen JG, Agerholm I. The cleavage stage embryo. Hum Reprod. 2012;27(Suppl 1):i50–71.

    Article  PubMed  Google Scholar 

  3. Hlinka D, Kalatova B, Uhrinova I, Dolinska S, Rutarova J, Rezacova J, et al. Time-lapse cleavage rating predicts human embryo viability. Physiol Res. 2012;61:513–25.

    CAS  PubMed  Google Scholar 

  4. Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, et al. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101:1637–48 e1–5.

    Article  PubMed  Google Scholar 

  5. Telentschak S, Soliwoda M, Nohroudi K, Addicks K, Klinz FJ. Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells. Oncol Rep. 2015;33:2001–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem. 2015;117:111–25.

    Article  CAS  PubMed  Google Scholar 

  7. Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, et al. The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet. 2013;30:703–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhan Q, Ye Z, Clarke R, Rosenwaks Z, Zaninovic N. Direct unequal cleavages: embryo developmental competence, genetic constitution and clinical outcome. PLoS One. 2016;11:e0166398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hardarson T, Selleskog U, Reismer E, Wigander A, Wennerstrom S, Westin C, et al. Zygotes cleaving directly into more than two cells after 25–27 h in culture are predominantly chromosomally abnormal. Hum Reprod. 2006;21:1.

    Article  Google Scholar 

  10. Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G, et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29:2802–13.

    Article  CAS  PubMed  Google Scholar 

  11. Yan L, Huang L, Xu L, Huang J, Ma F, Zhu X, et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A. 2015;112:15964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83.

    Article  CAS  PubMed  Google Scholar 

  13. Lu Y, Peng H, Jin Z, Cheng J, Wang S, Ma M, et al. Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3). PLoS One. 2013;8:e73245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338:1622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110:18761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kola I, Trounson A, Dawson G, Rogers P. Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol Reprod. 1987;37:395–401.

    Article  CAS  PubMed  Google Scholar 

  17. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    Article  PubMed  Google Scholar 

  18. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98:1458–63.

    Article  PubMed  Google Scholar 

  19. Gleicher N, Vidali A, Braverman J, Kushnir VA, Barad DH, Hudson C, et al. Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod Biol Endocrinol. 2016;14:54.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Wang W, Sun X, Liu L, Jin H, Li M, et al. DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal age are aneuploid and mosaic. Biol Reprod. 2012;87:148.

    Article  PubMed  Google Scholar 

  21. Baart EB, Martini E, Van Den Berg I, Macklon NS, Galjaard RJ, Fauser BC, et al. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod. 2006;21:223–33.

    Article  CAS  PubMed  Google Scholar 

  22. Scott RT Jr, Galliano D. The challenge of embryonic mosaicism in preimplantation genetic screening. Fertil Steril. 2016;105:1150–2.

    Article  PubMed  Google Scholar 

  23. Chow JF, Yeung WS, Lau EY, Lee VC, Ng EH, Ho PC. Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol. 2014;12:105.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6:1055–62.

    Article  CAS  PubMed  Google Scholar 

  25. Fragouli E, Alfarawati S, Spath K, Babariya D, Tarozzi N, Borini A, et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet. 2017;136:805–19.

    Article  CAS  PubMed  Google Scholar 

  26. Palermo G, Munne S, Cohen J. The human zygote inherits its mitotic potential from the male gamete. Hum Reprod. 1994;9:1220–5.

    Article  CAS  PubMed  Google Scholar 

  27. Sathananthan AH, Tarin JJ, Gianaroli L, Ng SC, Dharmawardena V, Magli MC, et al. Development of the human dispermic embryo. Hum Reprod Update. 1999;5:553–60.

    Article  CAS  PubMed  Google Scholar 

  28. Gisselsson D, Jin Y, Lindgren D, Persson J, Gisselsson L, Hanks S, et al. Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc Natl Acad Sci U S A. 2010;107:20489–93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod. 2005;20:672–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pro. William SB Yeung (The University of Hong Kong) for critical reading and editing of the manuscript.

Funding

This research was supported by the National Nature Science Foundation of China (81300549), Translational Medicine Program of Chinese PLA General Hospital (2016TM-028) and National Key Technology Support Program (2012BAI32B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Peng.

Ethics declarations

The Institutional Review Board of Chinese PLA General Hospital (S2016-106-01) approved this study. All the recruited patients signed a written consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Zhang, S., Lu, C. et al. Chromosome constitution of equal-sized three-cell embryos using next-generation sequencing technology. J Assist Reprod Genet 36, 307–314 (2019). https://doi.org/10.1007/s10815-018-1362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1362-7

Keywords

Navigation