Skip to main content
Log in

Single blastomeres as a source of mouse embryonic stem cells: effect of genetic background, medium supplements, and signaling modulators on derivation efficiency

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess the role of the genetic background, the culture medium supplements, and the presence of modulators of signaling pathways on mouse embryonic stem cell derivation from single blastomeres from 8-cell embryos.

Methods

Mice from permissive and non-permissive genetic backgrounds, different culture media supplements, knockout serum replacement (KSR) and N2B27, and the presence or absence of 2i treatment were used to derive mouse embryonic stem cells (mESC) from single blastomeres isolated from 8-cell embryos and from control embryos at the blastocyst stage. After the sixth passage, the putative mESC were analyzed by immunofluorescence to assess their pluripotency and, after in vitro differentiation induction, their ability to differentiate into derivatives of the three primary germ layers. Selected mESC lines derived from single blastomeres in the most efficient culture conditions were further characterized to validate their stemness.

Results

In control embryos, high mESC derivation efficiencies (70–96.9%) were obtained from permissive backgrounds or when embryos were cultured in medium complemented with 2i regardless of their genetic background. By contrast, only blastomeres isolated from embryos from permissive background cultured in KSR-containing medium complemented with 2i were moderately successful in the derivation of mESC lines (22.9–24.5%). Moreover, we report for the first time that B6CBAF2 embryos behave as permissive in terms of mESC derivation.

Conclusions

Single blastomeres have higher requirements than whole blastocysts for pluripotency maintenance and mESC derivation. The need for 2i suggests that modulation of signaling pathways to recreate a commitment towards inner cell mass could be essential to efficiently derive mESC from single blastomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biswas A, Hutchins R. Embryonic stem cells. Stem Cells Dev. 2007;16:213–21.

    Article  CAS  PubMed  Google Scholar 

  2. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol Nature Publishing Group. 2016;17:155–69.

    Article  CAS  PubMed  Google Scholar 

  3. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  4. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS. 1981;78:7634–8.

    Article  CAS  PubMed  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  6. Eistetter HR. Pluripotent embryonal stem cell lines can be established from disaggregated mouse morulae. Development. 1989;31:275–82.

    Google Scholar 

  7. Tesar PJ. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. PNAS. 2005;102:8239–44.

    Article  CAS  PubMed  Google Scholar 

  8. Lee K-H, Chuang C-K, Guo S-F, Tu C-F. Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev. 2012;21:373–83.

    Article  CAS  PubMed  Google Scholar 

  9. Delhaise F, Bralion V, Schuurbiers N, Dessy F. Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. Eur J Morphol. 1996;34:237–43.

    Article  CAS  PubMed  Google Scholar 

  10. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444:481–5.

    Article  CAS  PubMed  Google Scholar 

  11. Chung Y, Klimanskaya I, Becker S, Marh J, Lu S-J, Johnson J, et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature. 2006;439:216–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2:113–7.

    Article  CAS  PubMed  Google Scholar 

  13. González S, Ibáñez E, Santaló J. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres. Stem Cell Rev Rep. 2011;7:494–505.

    Article  CAS  PubMed  Google Scholar 

  14. Wakayama S, Hikichi T, Suetsugu R, Sakaide Y, Bui H-T, Mizutani E, et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells. 2007;25:986–93.

    Article  CAS  PubMed  Google Scholar 

  15. Lorthongpanich C, Yang SH, Piotrowska-Nitsche K, Parnpai R, Chan AWS. Development of single mouse blastomeres into blastocysts, outgrowths and the establishment of embryonic stem cells. Reproduction. 2008;135:805–13.

    Article  CAS  PubMed  Google Scholar 

  16. González S, Ibáñez E, Santaló J. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods. J Assist Reprod Genet. 2010;27:671–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Taei A, Hassani SN, Eftekhari-Yazdi P, Rezazadeh Valojerdi M, Nokhbatolfoghahai M, Masoudi NS, et al. Enhanced generation of human embryonic stem cells from single blastomeres of fair and poor-quality cleavage embryos via inhibition of glycogen synthase kinase b and Rho-associated kinase signaling. Hum Reprod. 2013;28:2661–71.

    Article  CAS  PubMed  Google Scholar 

  18. Czechanski A, Byers C, Greenstein I, Schrode N, Donahue LR, Hadjantonakis A-K, et al. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc. 2014;9:559–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawase E, Suemori H, Takahashi N, Okazaki K, Hashimoto K, Nakatsuji N. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int J Dev Biol. 1994;38:385–90.

    CAS  PubMed  Google Scholar 

  20. Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. PNAS. 1997;94:5709–12.

    Article  CAS  PubMed  Google Scholar 

  21. Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394:369–74.

    Article  CAS  PubMed  Google Scholar 

  22. Gao S, McGarry M, Priddle H, Ferrier T, Gasparrini B, Fletcher J, et al. Effects of donor oocytes and culture conditions on development of cloned mice embryos. Mol Reprod Dev. 2003;66:126–33.

    Article  CAS  PubMed  Google Scholar 

  23. Mallol A, Santaló J, Ibáñez E. Improved development of somatic cell cloned mouse embryos by vitamin C and latrunculin A. PLoS One. 2015;10:e0120033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wakayama T, Tabar V, Rodriguez I, Perry ACF, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. 2001;292:740–3.

    Article  CAS  PubMed  Google Scholar 

  25. Costa-Borges N, Gonzalez S, Santaló J, Ibáñez E. Effect of the enucleation procedure on the reprogramming potential and developmental capacity of mouse cloned embryos treated with valproic acid. Reproduction. 2011;141:789–800.

    Article  CAS  PubMed  Google Scholar 

  26. Lee K-H. Conditions and techniques for mouse embryonic stem cell derivation and culture. In: Bhartiya D, editor. Pluripotent stem cells. InTech; 2013. p. 85–115.

  27. Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL. Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis. 2004;39:100–4.

    Article  PubMed  Google Scholar 

  28. Chaudhry MA, Vitalis TZ, Bowen BD, Piret JM. Basal medium composition and serum or serum replacement concentration influences on the maintenance of murine embryonic stem cells. Cytotechnology. 2008;58:173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ying QL, Smith AG. Defined conditions for neural commitment and differentiation. Methods Enzymol. 2003;365:327–41.

    Article  CAS  PubMed  Google Scholar 

  30. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336:688–90.

    Article  CAS  PubMed  Google Scholar 

  31. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336:684–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamm C, Galitó SP, Annerén C. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One. 2013;8:e81156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hassani SN, Totonchi M, Farrokhi A, Taei A, Larijani MR, Gourabi H, et al. Simultaneous suppression of TGF-β and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem Cell Rev Rep. 2012;8:472–81.

    Article  CAS  PubMed  Google Scholar 

  35. Ogawa K, Matsui H, Ohtsuka S, Niwa H. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells. 2004;9:471–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hassani S-N, Pakzad M, Asgari B, Taei A, Baharvand H. Suppression of transforming growth factor β signaling promotes ground state pluripotency from single blastomeres. Hum Reprod. 2014;29:1739–48.

    Article  CAS  PubMed  Google Scholar 

  37. Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol. 2014;16:516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Batlle-Morera L, Smith A, Nichols J. Parameters influencing derivation of embryonic stem cells from murine embryos. Genesis. 2008;46:758–67.

    Article  PubMed  Google Scholar 

  39. Nagy A, Vintersten K, Behringer R. Manipulating the mouse embryo: a laboratory manual. 3rd ed. New York: Cold Spring Harb. Lab Press; 2003.

    Google Scholar 

  40. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I. An improved culture medium support development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil Ltd. 1989;86:679–88.

    Article  CAS  Google Scholar 

  41. Ohtsuka S, Niwa H. The differential activation of intracellular signaling pathways confers the permissiveness of embryonic stem cell derivation from different mouse strains. Development. 2015;142:431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bachvarova R, De Leon V. Polyadenylated RNA of mouse ova and loss of maternal RNA in early development. Dev Biol. 1980;74:1–8.

    Article  CAS  PubMed  Google Scholar 

  43. Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev. 1990;26:90–100.

    Article  CAS  PubMed  Google Scholar 

  44. Bouniol C, Nguyen E, Debey P. Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res. 1995;218:57–62.

    Article  CAS  PubMed  Google Scholar 

  45. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181:296–307.

    Article  CAS  PubMed  Google Scholar 

  46. Lu C-W, Yabuuchi A, Chen L, Viswanathan S, Kim K, Daley GQ. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat Genet. 2008;40:921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nichols J, Silva J, Roode M, Smith A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development. 2009;136(19):3215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morgani SM, Canham MA, Nichols J, Sharov AA, Portero R, Ko SHM, et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 2013;3:1945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez JM, Morgani SM, Bone RA, Bonderup K, Abelchian S, Brakebusch C, et al. Embryonic stem cell culture conditions support distinct states associated with different developmental stages and potency. Stem Cell Reports. 2016;7:177–91.

    Article  CAS  Google Scholar 

  50. Tighe A, Ray-Sinha A, Staples OD, Taylor SS. GSK-3 inhibitors induce chromosomal instability. BMC Cell Biol. 2007;8:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, et al. Prolonged MEK1/2 suppression impairs the developmental potential of embryonic stem cells. Nature. 2017;548:219–23.

    Article  CAS  Google Scholar 

  52. Weissbein U, Benvenisty N, Ben-David U. Genome maintenance in pluripotent stem cells. J Cell Biol. 2014;204:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gaztelumendi N, Nogues C. Chromosome instability in mouse embryonic stem cells. Sci Rep. 2014;4:1–8.

    Google Scholar 

Download references

Acknowledgments

We thank Jonatan Lucas for his technical assistance with feeder cell culture, the staff from Servei Estabulari from Universitat Autònoma de Barcelona for animal care, and Salvador Bartolomé for his assistance and advice in the design of the qPCR experiments.

Funding

This work has been supported by Ministerio de Economia y Competitividad (AGL2014-52408-R) and Generalitat de Catalunya (2014 SGR-524). MVC was beneficiary of a PIF-UAB fellowship and OM is beneficiary of a FI fellowship from the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ibáñez.

Ethics declarations

Ethical approval

Mouse care and procedures were conducted according to the protocols approved by the Ethics Committee on Animal and Human Research of the Universitat Autònoma de Barcelona and by the Departament d’Agricultura, Ramaderia, Pesca I Alimentació of the Generalitat de Catalunya (ref. 8741).

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila-Cejudo, M., Massafret, O., Santaló, J. et al. Single blastomeres as a source of mouse embryonic stem cells: effect of genetic background, medium supplements, and signaling modulators on derivation efficiency. J Assist Reprod Genet 36, 99–111 (2019). https://doi.org/10.1007/s10815-018-1360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1360-9

Keywords

Navigation