Skip to main content
Log in

Can peri-ovulatory putrescine supplementation improve egg quality in older infertile women?

  • Commentary Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The aging-related decline in fertility is an increasingly pressing medical and economic issue in modern society where women are delaying family building. Increasingly sophisticated, costly, and often increasingly invasive, assisted reproductive clinical protocols and laboratory technologies (ART) have helped many older women achieve their reproductive goals. Current ART procedures have not been able to address the fundamental problem of oocyte aging, the increased rate of egg aneuploidy, and the decline of developmental potential of the eggs. Oocyte maturation, which is triggered by luteinizing hormone (LH) in vivo or by injection of human chorionic gonadotropin (hCG) in an in vitro fertilization (IVF) clinic, is the critical stage at which the majority of egg aneuploidies arise and when much of an egg’s developmental potential is established. Our proposed strategy focuses on improving egg quality in older women by restoring a robust oocyte maturation process. We have identified putrescine deficiency as one of the causes of poor egg quality in an aged mouse model. Putrescine is a biogenic polyamine naturally produced in peri-ovulatory ovaries. Peri-ovulatory putrescine supplementation has reduced egg aneuploidy, improved embryo quality, and reduced miscarriage rates in aged mice. In this paper, we review the literature on putrescine, its occurrence and physiology in living organisms, and its unique role in oocyte maturation. Preliminary human data demonstrates that there is a maternal aging-related deficiency in ovarian ornithine decarboxylase (ODC), the enzyme responsible for putrescine production. We argue that peri-ovulatory putrescine supplementation holds great promise as a natural and effective therapy for infertility in women of advanced maternal age, applicable in natural conception and in combination with current ART therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AZ:

Antizyme

COC:

Cumulus-oocyte complex

dcSAM:

Decarboxylased SAM

DFMO:

D,L-α-Difluoromethylornithine

GABA:

Gamma-aminobutyric acid

GV:

Germinal vesicle or oocyte nucleus

hCG:

Human chorionic gonadotropin

IVM:

Oocyte in vitro maturation

IVF:

In vitro fertilization

LH:

Luteinizing hormone

ODC:

Ornithine decarboxylase

ROS:

Reactive oxygen species

PDE3A:

Phosphodiesterase 3A

SAM:

S-adenosylmethionine

SAM-DC:

SAM decarboxylase

SSAT:

Spermidine/spermine N1 acetyltransferase

References

  1. American College of Obstetricians and Gynecologists Committee on Gynecologic Practice and Practice Committee. Female age-related fertility decline. Committee opinion no. 589. Fertil Steril. 2014;101:633–4.

    Article  Google Scholar 

  2. Angell RR. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet. 1991;86:383–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bastida CM, Cremades A, Castells MT, Lopez-Contreras AJ, Lopez-Garcia C, Tejada F, et al. Influence of ovarian ornithine decarboxylase in folliculogenesis and luteinization. Endocrinology. 2005;146:666–74.

    Article  CAS  PubMed  Google Scholar 

  4. Bell MR, Belarde JA, Johnson HF, Aizenman CD. A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy. Nat Neurosci. 2011;14:505–12.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14:887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown HM, Dunning KR, Sutton-McDowall M, Gilchrist RB, Thompson JG, Russell DL. Failure to launch: aberrant cumulus gene expression during oocyte in vitro maturation. Reproduction. 2017;153:R109–20.

    Article  CAS  PubMed  Google Scholar 

  7. Bruun L, Houen G. In situ detection of diamine oxidase activity using enhanced chemiluminescence. Anal Biochem. 1996;233:130–6.

    Article  CAS  PubMed  Google Scholar 

  8. Cayre M, Strambi C, Charpin P, Augier R, Strambi A. Specific requirement of putrescine for the mitogenic action of juvenile hormone on adult insect neuroblasts. Proc Natl Acad Sci U S A. 1997;94:8238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen SS. Pathways of polyamine metabolism in animals. In: A guide to the polyamines. Oxford: Oxford University Press; 1998. p. 208–30.

    Google Scholar 

  10. Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018;24:245–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Vos M, Smitz J, Thompson JG, and Gilchrist RB. The definition of IVM is clear-variations need defining. Hum Reprod. 2016;31:2011–2015.

    Google Scholar 

  12. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14.

    Article  CAS  PubMed  Google Scholar 

  13. Eppig JJ. The relationship between cumulus cell-oocyte coupling, oocyte meiotic maturation, and cumulus expansion. Dev Biol. 1982;89:268–72.

    Article  CAS  PubMed  Google Scholar 

  14. Eppig JJ, Schultz RM, O'Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol. 1994;164:1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fenelon JC, Banerjee A, Lefevre P, Gratian F, Murphy BD. Polyamine-mediated effects of prolactin dictate emergence from mink obligate embryonic diapause. Biol Reprod. 2016;95:6.

    Article  CAS  PubMed  Google Scholar 

  16. Fozard JR, Part ML, Prakash NJ, Grove J, Schechter PJ, Sjoerdsma A, et al. L-ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science. 1980a;208:505–8.

    Article  CAS  PubMed  Google Scholar 

  17. Fozard JR, Prakash NJ, Grove J. Ovarian function in the rat following irreversible inhibition of L-ornithine decarboxylase. Life Sci. 1980b;27:2277–83.

    Article  CAS  PubMed  Google Scholar 

  18. Gerner EW, Meyskens FL Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer. 2004;4:781–92.

    Article  CAS  PubMed  Google Scholar 

  19. Grant AL, Holland RE, Thomas JW, King KJ, Liesman JS. Effects of dietary amines on the small intestine in calves fed soybean protein. J Nutr. 1989;119:1034–41.

    Article  CAS  PubMed  Google Scholar 

  20. Grant AL, Thomas JW, King KJ, Liesman JS. Effects of dietary amines on small intestinal variables in neonatal pigs fed soy protein isolate. J Anim Sci. 1990;68:363–71.

    Article  CAS  PubMed  Google Scholar 

  21. Guzman L, Ortega-Hrepich C, Albuz FK, Verheyen G, Devroey P, Smitz J, et al. Developmental capacity of in vitro-matured human oocytes retrieved from polycystic ovary syndrome ovaries containing no follicles larger than 6 mm. Fertil Steril. 2012;98:503–7.

    Article  PubMed  Google Scholar 

  22. Halonen T, Sivenius J, Miettinen R, Halmekyto M, Kauppinen R, Sinervirta R, et al. Elevated seizure threshold and impaired spatial learning in transgenic mice with putrescine overproduction in the brain. Eur J Neurosci. 1993;5:1233–9.

    Article  CAS  PubMed  Google Scholar 

  23. Icekson I, Kaye AM, Lieberman ME, Lamprecht SA, Lahav M, Lindner HR. Stimulation by luteinizing hormone of ornithine decarboxylase in rat ovary: preferential response by follicular tissue. J Endocrinol. 1974;63:417–8.

    Article  CAS  PubMed  Google Scholar 

  24. Iorgulescu JB, Patel SP, Louro J, Andrade CM, Sanchez AR, Pearse DD. Acute putrescine supplementation with Schwann cell implantation improves sensory and serotonergic axon growth and functional recovery in spinal cord injured rats. Neural Plast. 2015;2015:186385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson RF, Beltz TG, Thunhorst RL, Johnson AK. Investigations on the physiological controls of water and saline intake in C57BL/6 mice. Am J Physiol Regul Integr Comp Physiol. 2003;285:R394–403.

    Article  CAS  PubMed  Google Scholar 

  26. Kaye AM, Icekson I, Lamprecht SA, Gruss R, Tsafriri A, Lindner HR. Stimulation of ornithine decarboxylase activity by luteinizing hormone in immature and adult rat ovaries. Biochemistry. 1973;12:3072–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi Y, Kupelian J, Maudsley DV. Ornithine decarboxylase stimulation in rat ovary by luteinizing hormone. Science. 1971;172:379–80.

    Article  CAS  PubMed  Google Scholar 

  28. Kong X, Wang X, Yin Y, Li X, Gao H, Bazer FW, et al. Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol Reprod. 2014;91:106.

    Article  CAS  PubMed  Google Scholar 

  29. Lefevre PL, Palin MF, Chen G, Turecki G, Murphy BD. Polyamines are implicated in the emergence of the embryo from obligate diapause. Endocrinology. 2011;152:1627–39.

    Article  CAS  PubMed  Google Scholar 

  30. Liang XH, Zhao ZA, Deng WB, Tian Z, Lei W, Xu X, et al. Estrogen regulates amiloride-binding protein 1 through CCAAT/enhancer-binding protein-beta in mouse uterus during embryo implantation and decidualization. Endocrinology. 2010;151:5007–16.

    Article  CAS  PubMed  Google Scholar 

  31. Liu D, Mo G, Tao Y, Wang H, Liu XJ. Putrescine supplementation during in vitro maturation of aged mouse oocytes improves the quality of blastocysts. Reprod Fertil Dev. 2017;29:1392–1400.

    Article  CAS  PubMed  Google Scholar 

  32. Liu D, Mo G, Tao Y, Wang H, Liu XJ. Putrescine supplementation during in vitro maturation of aged mouse oocytes improves the quality of blastocysts. Reprod Fertil Dev. 2017;29:1392–400.

    Article  CAS  PubMed  Google Scholar 

  33. Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, et al. Resveratrol protects against age-associated infertility in mice. Hum Reprod. 2013;28:707–17.

    Article  CAS  PubMed  Google Scholar 

  34. Maudsley DV, Kobayashi Y. Induction of ornithine decarboxylase in rat ovary after administration of luteinizing hormone or human chorionic gonadotrophin. Biochem Pharmacol. 1974;23:2697–703.

    Article  CAS  PubMed  Google Scholar 

  35. Meldrum DR, Casper RF, Diez-Juan A, Simon C, Domar AD, Frydman R. Aging and the environment affect gamete and embryo potential: can we intervene? Fertil Steril. 2016;105:548–59.

    Article  PubMed  Google Scholar 

  36. Metcalf BW, Bey P, Danzin C, Jung MJ, Casara P, Vevert JP. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogues. J Am Chem Soc. 1978;100:2551–3.

    Article  CAS  Google Scholar 

  37. Moor RM, Dai Y, Lee C, Fulka J Jr. Oocyte maturation and embryonic failure. Hum Reprod Update. 1998;4:223–36.

    Article  CAS  PubMed  Google Scholar 

  38. Muller M, Cleef M, Rohn G, Bonnekoh P, Pajunen AE, Bernstein HG, et al. Ornithine decarboxylase in reversible cerebral ischemia: an immunohistochemical study. Acta Neuropathol. 1991;83:39–45.

    Article  CAS  PubMed  Google Scholar 

  39. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 1992;360:597–9.

    Article  CAS  PubMed  Google Scholar 

  40. Nehra D, Le HD, Fallon EM, Carlson SJ, Woods D, White YA, et al. Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell. 2012;11:1046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Niiranen K, Keinanen TA, Pirinen E, Heikkinen S, Tusa M, Fatrai S, et al. Mice with targeted disruption of spermidine/spermine N1-acetyltransferase gene maintain nearly normal tissue polyamine homeostasis but show signs of insulin resistance upon aging. J Cell Mol Med. 2006;10:933–45.

    Article  CAS  PubMed  Google Scholar 

  42. Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem (Tokyo). 2006;139:81–90.

    Article  CAS  Google Scholar 

  43. Nogueira D, Sadeu JC, Montagut J. In vitro oocyte maturation: current status. Semin Reprod Med. 2012;30:199–213.

    Article  PubMed  Google Scholar 

  44. Ortega-Hrepich C, Stoop D, Guzman L, Van LL, Tournaye H, Smitz J, et al. A “freeze-all” embryo strategy after in vitro maturation: a novel approach in women with polycystic ovary syndrome? Fertil Steril. 2013;100:1002–7.

    Article  PubMed  Google Scholar 

  45. Paschen W, Csiba L, Rohn G, Bereczki D. Polyamine metabolism in transient focal ischemia of rat brain. Brain Res. 1991;566:354–7.

    Article  CAS  PubMed  Google Scholar 

  46. Pegg AE, Casero RA Jr. Current status of the polyamine research field. Methods Mol Biol. 2011;720:3–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pegg AE, McGovern KA, Wiest L. Decarboxylation of alpha-difluoromethylornithine by ornithine decarboxylase. Biochem J. 1987;241:305–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, et al. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol. 2001;21:6549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Persson L, Isaksson K, Rosengren E, Sundler F. Distribution of ornithine decarboxylase in ovaries of rat and hamster during pro-oestrus. Acta Endocrinol. 1986;113:403–9.

    Article  CAS  PubMed  Google Scholar 

  50. Quinn MC, McGregor SB, Stanton JL, Hessian PA, Gillett WR, Green DP. Purification of granulosa cells from human ovarian follicular fluid using granulosa cell aggregates. Reprod Fertil Dev. 2006;18:501–8.

    Article  CAS  PubMed  Google Scholar 

  51. Raina A, Eloranta T, Kajander O. Biosynthesis and metabolism of polyamines and S-adenosylmethionine in the rat. Biochem Soc Trans. 1976;4:968–71.

    Article  CAS  PubMed  Google Scholar 

  52. Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Hoog C, Kitajima TS. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat Commun. 2015;6:7550.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schwartz B, Hittelman A, Daneshvar L, Basu HS, Marton LJ, Feuerstein BG. A new model for disruption of the ornithine decarboxylase gene, SPE1, in Saccharomyces cerevisiae exhibits growth arrest and genetic instability at the MAT locus. Biochem J. 1995;312(Pt 1):83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Selesniemi K, Lee HJ, Muhlhauser A, Tilly JL. From the cover: prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc Natl Acad Sci U S A. 2011;108:12319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stouffer RL, Zelinski-Wooten MB. Overriding follicle selection in controlled ovarian stimulation protocols: quality vs quantity. Reprod Biol Endocrinol. 2004;2:32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sunkara PS, Wright DA, Nishioka K. An essential role for putrescine biosynthesis during meiotic maturation of amphibian oocytes. Dev Biol. 1981;87:351–5.

    Article  CAS  PubMed  Google Scholar 

  57. Tao Y, Liu D, Mo G, Wang H, Liu XJ. Peri-ovulatory putrescine supplementation reduces embryo resorption in older mice. Hum Reprod. 2015;30:1867–75.

    Article  CAS  PubMed  Google Scholar 

  58. Tao Y, Liu XJ. Deficiency of ovarian ornithine decarboxylase contributes to aging-related egg aneuploidy in mice. Aging Cell. 2013;12:42–9.

    Article  CAS  PubMed  Google Scholar 

  59. Til HP, Falke HE, Prinsen MK, Willems MI. Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem Toxicol. 1997;35:337–48.

    Article  CAS  PubMed  Google Scholar 

  60. Wagner J, Claverie N, Danzin C. A rapid high-performance liquid chromatographic procedure for the simultaneous determination of methionine, ethionine, S-adenosylmethionine, S-adenosylethionine, and the natural polyamines in rat tissues. Anal Biochem. 1984;140:108–16.

    Article  CAS  PubMed  Google Scholar 

  61. Washkowitz AJ, Schall C, Zhang K, Wurst W, Floss T, Mager J, et al. Mga is essential for the survival of pluripotent cells during peri-implantation development. Develop. 2015;142:31–40.

    Article  CAS  Google Scholar 

  62. Younglai EV, Godeau F, Mester J, Baulieu EE. Increased ornithine decarboxylase activity during meiotic maturation in Xenopus laevis oocytes. Biochem Biophys Res Commun. 1980;96:1274–81.

    Article  CAS  PubMed  Google Scholar 

  63. Yun Y, Lane SI, Jones KT. Premature dyad separation in meiosis II is the major segregation error with maternal age in mouse oocytes. Develop. 2014;141:199–208.

    Article  CAS  Google Scholar 

  64. Zhang M, Pickart CM, Coffino P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 2003;22:1488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou Y, Ma C, Karmouch J, Katbi HA, Liu XJ. Antiapoptotic role for ornithine decarboxylase during oocyte maturation. Mol Cell Biol. 2009;29:1786–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by a research grant from March of Dimes (6-FY13-126) (to XJL), and by the Office of the Director, National Institutes of Health under Award Number P51OD011092 (to ONPRC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Johné Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Tartia, A., Lawson, M. et al. Can peri-ovulatory putrescine supplementation improve egg quality in older infertile women?. J Assist Reprod Genet 36, 395–402 (2019). https://doi.org/10.1007/s10815-018-1327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1327-x

Keywords

Navigation