Skip to main content
Log in

Mitochondrial DNA copy number in peripheral blood: a potential non-invasive biomarker for female subfertility

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Low mitochondrial DNA (mtDNA) content in oocytes and in cumulus cells is an indicator of poor oocyte quality. Moreover, initial evidence showed a correlation between mtDNA content in cumulus cells and mtDNA copy number in peripheral blood cells. On these bases, we deemed of interest investigating the correlation between mtDNA copy number in peripheral blood and natural fecundity.

Methods

This is a nested case–control study drawn from a prospective cohort of pregnant women referred for routine first trimester screening for aneuploidies (from 11 + 0 to 12 + 6 weeks of gestation) between January 2012 and March 2013 at the “Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico” of Milan, Italy. Cases were subfertile women who attempted to become pregnant for 12–24 months. Controls were the two subsequently age-matched women who became pregnant in less than 1 year. MtDNA was quantified using real-time PCR and normalized to nuclear DNA.

Results

One hundred and four subfertile women and 208 controls were selected. The median (IQR) mtDNA copy number was 95 (73–124) and 145 (106–198), respectively (p < 0.001). The area under the ROC curve was 0.73 (95% CI 0.67–0.79) (p < 0.001). The Youden index was 105 mtDNA copy number. The crude OR for subfertility in women with mtDNA copy number below this threshold was 5.72 (95% CI 3.43–9.55). The accuracy of mtDNA copy number assessment in peripheral blood progressively decreased with increasing female age.

Conclusions

Low mtDNA copy number in peripheral blood is associated with an increased risk of subfertility and may represent a biomarker of natural fecundity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shen J, Gopalakrishnan V, Lee J, Fang S, Zhao H. Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS One. 2015;10:e0131649.

    Article  Google Scholar 

  2. Zhang J, Xu S, Xu Y, Liu Y, Li Z, Zhang Y, et al. Relation of mitochondrial DNA copy number in peripheral blood to postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. Am J Cardiol. 2017;119:473–7.

    Article  CAS  Google Scholar 

  3. Demain LA, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet. 2017;91:199–207.

    Article  CAS  Google Scholar 

  4. May-Panloup P, Boucret L, de la Chao Barca JM, Desquiret-Dumas V, Ferré-L’Hotellier V, Morinière C, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22:725–43.

    Article  CAS  Google Scholar 

  5. Aiken CE, Tarry-Adkins JL, Penfold NC, Dearden L, Ozanne SE. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2015;30:1548–56.

    Article  Google Scholar 

  6. Ratts VS, Flaws JA, Kolp R, Sorenson CM, Tilly JL. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology. 1995;136:3665–8.

    Article  CAS  Google Scholar 

  7. Hsu SY, Lai RJ, Finegold M, Hsueh AJ. Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology. 1996;137:4837–43.

    Article  CAS  Google Scholar 

  8. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37:299–310.

    Article  CAS  Google Scholar 

  9. Bonomi M, Somigliana E, Cacciatore C, Busnelli M, Rossetti R, Bonetti S, et al. Blood cell mitochondrial DNA content and premature ovarian aging. PLoS One. 2012;7:e42423.

    Article  CAS  Google Scholar 

  10. Ene AC, Park S, Edelmann W, Taketo T. Caspase 9 is constitutively activated in mouse oocytes and plays a key role in oocyte elimination during meiotic prophase progression. Dev Biol. 2013;377:213–23.

    Article  CAS  Google Scholar 

  11. St John JC, Tsai TS, Cagnone GL. Mitochondrial DNA supplementation as an enhancer of female reproductive capacity. Curr Opin Obstet Gynecol. 2016;28:211–6.

    Article  Google Scholar 

  12. St John JC. Mitochondrial DNA copy number and replication in reprogramming and differentiation. Semin Cell Dev Biol. 2016;52:93–101.

    Article  CAS  Google Scholar 

  13. Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85:584–91.

    Article  CAS  Google Scholar 

  14. Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7:425–9.

    Article  CAS  Google Scholar 

  15. Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Curr Opin Obstet Gynecol. 2015;27:175–81.

    Article  Google Scholar 

  16. St John J. The control of mtDNA replication during differentiation and development. Biochim Biophys Acta. 1840;2014:1345–54.

    Google Scholar 

  17. Boucret L, de la Chao Barca JM, Moriniere C, Desquiret V, Ferre-L’Hotellier V, Descamps P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod. 2015;30:1653–64.

    Article  CAS  Google Scholar 

  18. Ogino M, Tsubamoto H, Sakata K, Oohama N, Hayakawa H, Kojima T. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J Assist Reprod Genet. 2016;33:367–71.

    Article  Google Scholar 

  19. Desquiret-Dumas V, Clément A, Seegers V, Boucret L, Ferré-L'Hotellier V, Bouet PE, et al. The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum Reprod. 2017;32:607–14.

    CAS  PubMed  Google Scholar 

  20. Colleoni F, Lattuada D, Garretto A, Massari M, Mandò C, Somigliana E, et al. Maternal blood mitochondrial DNA content during normal and intrauterine growth restricted (IUGR) pregnancy. Am J Obstet Gynecol. 2010;203:365.e1–6.

    Article  Google Scholar 

  21. Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput Math Methods Med. 2017;3762651

  22. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet. 2004;364:875–82.

    Article  CAS  Google Scholar 

  23. Steiner AZ, Herring AH, Kesner JS, Meadows JW, Stanczyk FZ, Hoberman S, Baird DD Antimüllerian hormone as a predictor of natural fecundability in women aged 30–42 years. Obstet Gynecol 2011;117:798–804.

    Article  CAS  Google Scholar 

  24. Streuli I, de Mouzon J, Paccolat C, Chapron C, Petignat P, Irion OP, et al. AMH concentration is not related to effective time to pregnancy in women who conceive naturally. Reprod BioMed Online. 2014;28:216–24.

    Article  CAS  Google Scholar 

  25. Hagen CP, Vestergaard S, Juul A, Skakkebæk NE, Andersson AM, Main KM, et al. Low concentration of circulating antimüllerian hormone is not predictive of reduced fecundability in young healthy women: a prospective cohort study. Fertil Steril. 2012;98:–1602–8.e2.

    Article  Google Scholar 

  26. Somigliana E, Lattuada D, Colciaghi B, Filippi F, La Vecchia I, Tirelli A, et al. Serum anti-Müllerian hormone in subfertile women. Acta Obstet Gynecol Scan. 2015;94:1307–12.

    Article  CAS  Google Scholar 

  27. Steiner AZ, Pritchard D, Stanczyk FZ, Kesner JS, Meadows JW, Herring AH, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA. 2017;318:1367–76.

    Article  CAS  Google Scholar 

  28. Hsiao CP, Hoppel C. Analyzing mitochondrial function in human peripheral blood mononuclear cells. Anal Biochem. 2018;549:12–20.

    Article  CAS  Google Scholar 

  29. Knez J, Marrachelli VG, Cauwenberghs N, Winckelmans E, Zhang Z, Thijs L, et al. Peripheral blood mitochondrial DNA content in relation to circulating metabolites and inflammatory markers: a population study. PLoS One. 2017;12:e0181036.

    Article  Google Scholar 

  30. Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, et al. Mitochondrial integrity and function in atherogenesis. Circulation. 2002;106:544–9.

    Article  CAS  Google Scholar 

  31. Yakes F, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA. 1997;94:514–9.

    Article  CAS  Google Scholar 

  32. Liu LP, Cheng K, Ning MA, Li HH, Wang HC, Li F, et al. Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis. 2017;261:105–10.

    Article  CAS  Google Scholar 

  33. Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2(11):1247–55.

    Article  Google Scholar 

  34. Kim JY, Choi JR, Park IH, Huh JH, Son JW, Kim KW, et al. A prospective study of leucocyte mitochondrial DNA content and deletion in association with the metabolic syndrome. Diabetes Metab. 2017;43(3):280–3.

    Article  CAS  Google Scholar 

  35. Révész D, Verhoeven JE, Picard M, Lin J, Sidney S, Epel ES, et al. Associations between cellular aging markers and metabolic syndrome: findings from the CARDIA study. J Clin Endocrinol Metab. 2018;103(1):148–57.

    Article  Google Scholar 

  36. Huang CH, Su SL, Hsieh MC, Cheng WL, Chang CC, Wu HL, et al. Depleted leukocyte mitochondrial DNA copy number in metabolic syndrome. J Atheroscler Thromb. 2011;18(10):867–73.

    Article  CAS  Google Scholar 

  37. Knez J, Winckelmans E, Plusquin M, Thijs L, Cauwenberghs N, Gu Y, et al. Correlates of peripheral blood mitochondrial DNA content in a general population. Am J Epidemiol. 2016;183:138–46.

    PubMed  Google Scholar 

  38. Wong J, McLennan SV, Molyneaux L, Min D, Twigg SM, Yue DK. Mitochondrial DNA content in peripheral blood monocytes: relationship with age of diabetes onset and diabetic complications. Diabetologia. 2009;52:1953–61.

    Article  CAS  Google Scholar 

  39. Somigliana E, Paffoni A, Busnelli A, Filippi F, Pagliardini L, Vigano P, et al. Age-related infertility and unexplained infertility: an intricate clinical dilemma. Hum Reprod. 2016;31:1390–6.

    Article  Google Scholar 

  40. Mengel-From J, Thinggaard M, Dalgård C, Kyvik KO, Christensen K, Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum Genet. 2014;133:1149–59.

    Article  CAS  Google Scholar 

  41. Toledo FG, Watkins S, Kelley DE. Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab. 2006;91:3224–7.

    Article  CAS  Google Scholar 

  42. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Diet and lifestyle in the prevention of ovulatory disorder infertility. Obstet Gynecol. 2007;110:1050–8.

    Article  Google Scholar 

  43. Ravichandran K, McCaffrey C, Grifo J, Morales A, Perloe M, Munne S, et al. Mitochondrial DNA quantification as a tool for embryo viability assessment: retrospective analysis of data from single euploid blastocyst transfers. Hum Reprod. 2017;32:1282–92.

    Article  CAS  Google Scholar 

  44. Wells D, Ravichandran K, McCaffrey C, Grifo J, Morales A, Perloe M, et al. Reply: mitochondrial DNA quantification-the devil in the detail. Hum Reprod. 2017;32:2150–1.

    Article  Google Scholar 

  45. Barnes FL, Victor AR, Zouves CG, Viotti M. Mitochondrial DNA quantitation-making sense of contradictory reports. Hum Reprod. 2017;32:2149–50.

    Article  Google Scholar 

  46. Wang T, Zhang M, Jiang Z, Seli E. Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol. 2017;77(5).

    Article  Google Scholar 

  47. Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel CE, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:e1005241.

    Article  Google Scholar 

  48. Baird DD, Wilcox AJ, Weinberg CR. Use of time to pregnancy to study environmental exposures. Am J Epidemiol. 1986;124:470–80.

    Article  CAS  Google Scholar 

  49. Te Velde ER, Eijkemans R, Habbema HD. Variation in couple fecundity and time to pregnancy, an essential concept in human reproduction. Lancet. 2000;355:1928–9.

    Article  Google Scholar 

  50. Joffe M. Time trends in biological fertility in Britain. Lancet. 2000;355:1961–5.

    Article  CAS  Google Scholar 

  51. Vélez MP, Arbuckle TE, Fraser WD. Female exposure to phenols and phthalates and time to pregnancy: the maternal-infant research on environmental chemicals (MIREC) study. Fertil Steril. 2015;103:1011–20.

    Article  Google Scholar 

  52. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril. 2014;101:453–62.

    Article  Google Scholar 

  53. Lin XJ, Chong Y, Guo ZW, Xie C, Yang XJ, Zhang Q, et al. A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. Lancet Oncol. 2015;16:804–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Busnelli.

Ethics declarations

The study was accepted by the local Institutional Review Board. All recruited patients provided a written informed consent to participate.

Conflict of interest

A.B., D.L., R.R., A.P., L.P., L.F., and E.S., according to Italian laws, filed a patent application for mitochondrial DNA quantification in peripheral blood and for its use as non-invasive biomarker for female subfertility. E.S. handled grants of research from Ferring and Merck-Serono.

Additional information

Andrea Busnelli and Debora Lattuada should be regarded as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busnelli, A., Lattuada, D., Rossetti, R. et al. Mitochondrial DNA copy number in peripheral blood: a potential non-invasive biomarker for female subfertility. J Assist Reprod Genet 35, 1987–1994 (2018). https://doi.org/10.1007/s10815-018-1291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1291-5

Keywords

Navigation