Skip to main content

Advertisement

Log in

Are computational applications the “crystal ball” in the IVF laboratory? The evolution from mathematics to artificial intelligence

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Mathematics rules the world of science. Innovative technologies based on mathematics have paved the way for implementation of novel strategies in assisted reproduction. Ascertaining efficient embryo selection in order to secure optimal pregnancy rates remains the focus of the in vitro fertilization scientific community and the strongest driver behind innovative approaches. This scoping review aims to describe and analyze complex models based on mathematics for embryo selection, devices, and software most widely employed in the IVF laboratory and algorithms in the service of the cutting-edge technology of artificial intelligence. Despite their promising nature, the practicing embryologist is the one ultimately responsible for the success of the IVF laboratory and thus the one to approve embracing pioneering technologies in routine practice. Applied mathematics and computational biology have already provided significant insight into the selection of the most competent preimplantation embryo. This review describes the leap of evolution from basic mathematics to bioinformatics and investigates the possibility that computational applications may be the means to foretell a promising future for the IVF clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG, Purdy JM. Clinical aspects of pregnancies established with cleaving embryos grown in vitro. Br J Obstet Gynaecol. 1980;87:757–68.

    Article  PubMed  CAS  Google Scholar 

  2. Rienzi L, Vajta G, Ubaldi F. New culture devices in ART. Placenta. 2011;32(Suppl 3):S248–51.

    Article  PubMed  Google Scholar 

  3. Lazzaroni-Tealdi E, Barad DH, Albertini DF, Yu Y, Kushnir VA, Russell H, et al. Oocyte scoring enhances embryo-scoring in predicting pregnancy chances with IVF where it counts most. PLoS One. 2015;10:e0143632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Holte J, Berglund L, Milton K, Garello C, Gennarelli G, Revelli A, et al. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum Reprod. 2007;22:548–57.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21:727–47.

    Article  PubMed  CAS  Google Scholar 

  6. Manna C, Nanni L, Lumini A, Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod BioMed Online. 2013;26:42–9.

    Article  PubMed  Google Scholar 

  7. Harper J, Magli MC, Lundin K, Barratt CL, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2012;27:303–13.

    Article  PubMed  Google Scholar 

  8. National Research Council (US) Board on Biology. Bioinformatics: Converting Data to Knowledge: Workshop Summary [Internet]. Pool R, Esnayra J, editors. Washington (DC): National Academies Press (US); 2000 [cited 2018 Jun 1]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK44939/

  9. Eddy SR. What is Bayesian statistics? Nat Biotechnol. 2004;22:1177–8.

    Article  PubMed  CAS  Google Scholar 

  10. Dukic V, Hogan JW. A hierarchical Bayesian approach to modeling embryo implantation following in vitro fertilization. Biostatistics. 2002;3:361–77.

    Article  PubMed  Google Scholar 

  11. Zhou H, Weinberg CR. Evaluating effects of exposures on embryo viability and uterine receptivity in in vitro fertilization. Stat Med. 1998;17:1601–12.

    Article  PubMed  CAS  Google Scholar 

  12. Morales DA, Bengoetxea E, Larranaga P. Selection of human embryos for transfer by Bayesian classifiers. Comput Biol Med. 2008;38:1177–86.

    Article  PubMed  Google Scholar 

  13. Morales DA, Bengoetxea E, Larranaga P, Garcia M, Franco Y, Fresnada M, et al. Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Comput Methods Prog Biomed. 2008;90:104–16.

    Article  Google Scholar 

  14. Gianaroli L, Magli MC, Gambardella L, Giusti A, Grugnetti C, Corani G. Objective way to support embryo transfer: a probabilistic decision. Hum Reprod. 2013;28:1210–20.

    Article  PubMed  CAS  Google Scholar 

  15. Corani G, Magli C, Giusti A, Gianaroli L, Gambardella LM. A Bayesian network model for predicting pregnancy after in vitro fertilization. Comput Biol Med. 2013;43:1783–92.

    Article  PubMed  CAS  Google Scholar 

  16. Alpha Scientists in Reproductive M, Embryology ESIG of. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011; 26:1270–83.

  17. Woo I, Arrach N, Rhodes-Long K, Paco C, Paulson R, Chung K, et al. Detection of mosaicism using Bayesian model. Fertil Steril. 107:e22.

  18. Hnida C, Engenheiro E, Ziebe S. Computer-controlled, multilevel, morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryos. Hum Reprod. 2004;19:288–93.

    Article  PubMed  Google Scholar 

  19. Hnida C, Agerholm I, Ziebe S. Traditional detection versus computer-controlled multilevel analysis of nuclear structures from donated human embryos. Hum Reprod. 2005;20:665–71.

    Article  PubMed  Google Scholar 

  20. Beuchat A, Thevenaz P, Unser M, Ebner T, Senn A, Urner F, et al. Quantitative morphometrical characterization of human pronuclear zygotes. Hum Reprod. 2008;23:1983–92.

    Article  PubMed  CAS  Google Scholar 

  21. Paternot G, Debrock S, D’Hooghe T, Spiessens C. Computer-assisted embryo selection: a benefit in the evaluation of embryo quality? Reprod BioMed Online. 2011;23:347–54.

    Article  PubMed  Google Scholar 

  22. Paternot G, Debrock S, De Neubourg D, D’Hooghe TM, Spiessens C. Semi-automated morphometric analysis of human embryos can reveal correlations between total embryo volume and clinical pregnancy. Hum Reprod. 2013;28:627–33.

    Article  PubMed  CAS  Google Scholar 

  23. Strouthopoulos C, Anifandis G. An automated blastomere identification method for the evaluation of day 2 embryos during IVF/ICSI treatments. Comput Methods Prog Biomed. 2018;156:53–9.

    Article  Google Scholar 

  24. Kirkegaard K, Campbell A, Agerholm I, Bentin-Ley U, Gabrielsen A, Kirk J, et al. Limitations of a time-lapse blastocyst prediction model: a large multicentre outcome analysis. Reprod BioMed Online. 2014;29:156–8.

    Article  PubMed  Google Scholar 

  25. Dolinko AV, Farland LV, Kaser DJ, Missmer SA, Racowsky C. National survey on use of time-lapse imaging systems in IVF laboratories. J Assist Reprod Genet. 2017;34:1167–72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32:1025–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen M, Wei S, Hu J, Yuan J, Liu F. Does time-lapse imaging have favorable results for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization? A meta-analysis and systematic review of randomized controlled trials. PLoS One. 2017;12:e0178720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kovacs P. Embryo selection: the role of time-lapse monitoring. Reprod Biol Endocrinol. 2014;12:124.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reignier A, Lammers J, Barriere P, Freour T. Can time-lapse parameters predict embryo ploidy? A systematic review. Reprod Biomed Online [Internet]. 2018; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29398421.

  30. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.

    Article  PubMed  CAS  Google Scholar 

  31. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100:412–9. e5

    Article  PubMed  Google Scholar 

  32. VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod BioMed Online. 2014;29:729–36.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod. 2016;31:2231–44.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aparicio-Ruiz B, Basile N, Perez Albala S, Bronet F, Remohi J, Meseguer M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril. 2016;106:1379–85. e10

    Article  PubMed  Google Scholar 

  35. Behr B, Tan L, Conaghan J, Liebermann J, Bartolucci A, Chen AA. Non-invasive technology combining time-lapse imaging and statistical modeling: bringing automation into the lab to improve blastocyst selection. Fertil Steril. 104:e152.

  36. Verlinsky Y, Cieslak J, Freidine M, Ivakhnenko V, Wolf G, Kovalinskaya L, et al. Pregnancies following pre-conception diagnosis of common aneuploidies by fluorescent in-situ hybridization. Hum Reprod. 1995;10:1923–7.

    Article  PubMed  CAS  Google Scholar 

  37. Mastenbroek S, Repping S. Preimplantation genetic screening: back to the future. Hum Reprod. 2014;29:1846–50.

    Article  PubMed  Google Scholar 

  38. Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Electronic address: ASRM@asrm.org, Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109:429–36.

  39. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CF. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod BioMed Online. 2013;26:477–85.

    Article  PubMed  Google Scholar 

  40. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod BioMed Online. 2013;27:140–6.

    Article  PubMed  Google Scholar 

  41. Basile N, Nogales Mdel C, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101:699–704.

    Article  PubMed  Google Scholar 

  42. Barrie A, Homburg R, McDowell G, Brown J, Kingsland C, Troup S. Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertil Steril. 2017;107:613–21.

    Article  PubMed  Google Scholar 

  43. Patel DV, Shah PB, Kotdawala AP, Herrero J, Rubio I, Banker MR. Morphokinetic behavior of euploid and aneuploid embryos analyzed by time-lapse in embryoscope. J Hum Reprod Sci. 2016;9:112–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17:454–66.

    Article  PubMed  CAS  Google Scholar 

  45. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    Article  PubMed  Google Scholar 

  46. Cruz M, Garrido N, Herrero J, Perez-Cano I, Munoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod BioMed Online. 2012;25:371–81.

    Article  PubMed  Google Scholar 

  47. Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30:276–83.

    Article  PubMed  CAS  Google Scholar 

  48. Cetinkaya M, Pirkevi C, Yelke H, Colakoglu YK, Atayurt Z, Kahraman S. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J Assist Reprod Genet. 2015;32:27–35.

    Article  PubMed  Google Scholar 

  49. Milewski R, Kuc P, Kuczynska A, Stankiewicz B, Lukaszuk K, Kuczynski W. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J Assist Reprod Genet. 2015;32:571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Milewski R, Milewska AJ, Kuczynska A, Stankiewicz B, Kuczynski W. Do morphokinetic data sets inform pregnancy potential? J Assist Reprod Genet. 2016;33:357–65.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohi J, Meseguer M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril. 2016;105:376–84. e9

    Article  PubMed  Google Scholar 

  52. Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil Steril. 2016;105:656–62. e1

    Article  PubMed  Google Scholar 

  53. Carrasco B, Arroyo G, Gil Y, Gomez MJ, Rodriguez I, Barri PN, et al. Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics. J Assist Reprod Genet. 2017;34:983–90.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Feenan K, Chapple V, Matson P. Assessing efficacy of day 3 embryo time-lapse algorithms retrospectively: impacts of dataset type and confounding factors. Hum Fertil (Camb) 2018; 1–9.

  55. Storr A, Venetis C, Cooke S, Kilani S, Ledger W. Time-lapse algorithms and morphological selection of day-5 embryos for transfer: a preclinical validation study. Fertil Steril. 2018;109:276–83. e3

    Article  PubMed  Google Scholar 

  56. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23:89–109.

    Article  PubMed  CAS  Google Scholar 

  57. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  PubMed  CAS  Google Scholar 

  58. Kaufmann SJ, Eastaugh JL, Snowden S, Smye SW, Sharma V. The application of neural networks in predicting the outcome of in-vitro fertilization. Hum Reprod. 1997;12:1454–7.

    Article  PubMed  CAS  Google Scholar 

  59. Wald M, Sparks A, Sandlow J, Van-Voorhis B, Syrop CH, Niederberger CS. Computational models for prediction of IVF/ICSI outcomes with surgically retrieved spermatozoa. Reprod BioMed Online. 2005;11:325–31.

    Article  PubMed  Google Scholar 

  60. Uyar A, Bener A, Ciray H, Bahceci M. A frequency based encoding technique for transformation of categorical variables in mixed IVF dataset. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6214–7.

    Google Scholar 

  61. Siristatidis C, Pouliakis A, Chrelias C, Kassanos D. Artificial intelligence in IVF: a need. Syst Biol Reprod Med. 2011;57:179–85.

    Article  PubMed  Google Scholar 

  62. Milewski R, Milewska Anna J, Więsak T, Morgan A. Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using the in vitro fertilization treatment. slgr. 2013;35:39.

    Google Scholar 

  63. Banerjee P, Choi B, Shahine LK, Jun SH, O’Leary K, Lathi RB, et al. Deep phenotyping to predict live birth outcomes in in vitro fertilization. Proc Natl Acad Sci U S A. 2010;107:13570–5.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Choi B, Bosch E, Lannon BM, Leveille MC, Wong WH, Leader A, et al. Personalized prediction of first-cycle in vitro fertilization success. Fertil Steril. 2013;99:1905–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Simopoulou.

Additional information

M. Simopoulou and K. Sfakianoudis are the first co-authors in this study.

K. Pantos and M. Koutsilieris are the last co-authors in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simopoulou, M., Sfakianoudis, K., Maziotis, E. et al. Are computational applications the “crystal ball” in the IVF laboratory? The evolution from mathematics to artificial intelligence. J Assist Reprod Genet 35, 1545–1557 (2018). https://doi.org/10.1007/s10815-018-1266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1266-6

Keywords

Navigation