Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 8, pp 1359–1366 | Cite as

Why AMPK agonists not known to be stressors may surprisingly contribute to miscarriage or hinder IVF/ART

  • Elizabeth E. Puscheck
  • Alan Bolnick
  • Awoniyi Awonuga
  • Yu Yang
  • Mohammed Abdulhasan
  • Quanwen Li
  • Eric Secor
  • Erica Louden
  • Maik Hüttemann
  • Daniel A. RappoleeEmail author


Here we examine recent evidence suggesting that many drugs and diet supplements (DS), experimental AMP-activated protein kinase (AMPK) agonists as well as energy-depleting stress, lead to decreases in anabolism, growth or proliferation, and potency of cultured oocytes, embryos, and stem cells in an AMPK-dependent manner. Surprising data for DS and drugs that have some activity as AMPK agonists in in vitro experiments show possible toxicity. This needs to be balanced against a preponderance of evidence in vivo that these drugs and DS are beneficial for reproduction. We here discuss and analyze data that leads to two possible conclusions: First, although DS and drugs that have some of their therapeutic mechanisms mediated by AMPK activity associated with low ATP levels, some of the associated health problems in vivo and in vitro fertilization/assisted reproductive technologies (IVF/ART) may be better-treated by increasing ATP production using CoQ10 (Ben-Meir et al., Aging Cell 14:887–895, 2015). This enables high developmental trajectories simultaneous with solving stress by energy-requiring responses. In IVF/ART, it is ultimately best to maintain handling and culture of gametes and embryos in the quietest state with low metabolic activity (Leese et al., Mol Hum Reprod 14:667–672, 2008; Leese, Bioessays 24 (9):845–849, 2002) using back-to-nature or simplex algorithms to identify optima (Biggers, Reprod Biomed Online 4 Suppl 1:30–38, 2002). Stress markers, such as checkpoint proteins like TRP53 (aka p53) (Ganeshan et al., Exp Cell Res 358:227–233, 2017); Ganeshan et al., Biol Reprod 83:958–964, 2010) and a small set of kinases from the protein kinome that mediate enzymatic stress responses, can also be used to define optima. But, some gametes or embryos may have been stressed in vivo prior to IVF/ART or IVF/ART optimized for one outcome may be suboptimal for another. Increasing nutrition or adding CoQ10 to increase ATP production (Yang et al., Stem Cell Rev 13:454–464, 2017), managing stress enzyme levels with inhibitors (Xie et al., Mol Hum Reprod 12:217–224, 2006), or adding growth factors such as GM-CSF (Robertson et al., J Reprod Immunol 125:80–88, 2018); Chin et al., Hum Reprod 24:2997–3009, 2009) may increase survival and health of cultured embryos during different stress exposure contexts (Puscheck et al., Adv Exp Med Biol 843:77–128, 2015). We define “stress” as negative stimuli which decrease normal magnitude and speed of development, and these can be stress hormones, reactive oxygen species, inflammatory cytokines, or physical stimuli such as hypoxia. AMPK is normally activated by high AMP, commensurate with low ATP, but it was recently shown that if glucose is present inside the cell, AMPK activation by low ATP/high AMP is suppressed (Zhang et al., Nature 548:112–116, 2017). As we discuss in more detail below, this may also lead to greater AMPK agonist toxicity observed in two-cell embryos that do not import glucose. Stress in embryos and stem cells increases AMPK in large stimulation indexes but also direness indexes; the fastest AMPK activation occurs when stem cells are shifted from optimal oxygen to lower or high levels (Yang et al., J Reprod Dev 63:87–94, 2017). CoQ10 use may be better than risking AMPK-dependent metabolic and developmental toxicity when ATP is depleted and AMPK activated. Second, the use of AMPK agonists, DS, and drugs may best be rationalized when insulin resistance or obesity leads to aberrant hyperglycemia and hypertriglyceridemia, and obesity that negatively affect fertility. Under these conditions, beneficial effects of AMPK on increasing triglyceride and fatty acid and glucose uptake are important, as long as AMPK agonist exposures are not too high or do not occur during developmental windows of sensitivity. During these windows of sensitivity suppression of anabolism, proliferation, and stemness/potency due to AMPK activity, or overexposure may stunt or kill embryos or cause deleterious epigenetic changes.


Drugs Metformin Aspirin Diet supplements BR-DIM Stress AMPK agonist AMPK EMBRYOS Blastocysts TSC ESC iPSC OOCYTES Potency Differentiation Anabolism Catabolism Warburg metabolism Oxidative phosphorylation Mitochondria Electron transport chain 



We thank Dr. Todd Leff, Dr. Sudipta Dutta, and Dr. Gloria Perez for comments on the manuscript.


This study received funding from DAR and EEP from the Office of the Vice President for Research at Wayne State University and an R03 to DAR 1R03HD061431 and an R41 to DAR 1R41ES028991-01 from the REI fellows’ fund (AB) and from the funding of the Mary Iacobell and Kamran Moghissi Endowed Chairs.


  1. 1.
    Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol. 2015;843:77–128.CrossRefPubMedGoogle Scholar
  2. 2.
    Vazquez-Martin A, Corominas-Faja B, Cufi S, Vellon L, Oliveras-Ferraros C, Menendez OJ, et al. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle. 2013;12:207–18.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vazquez-Martin A, Vellon L, Quiros PM, Cufi S, Ruiz de Galarreta E, Oliveras-Ferraros C, et al. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle. 2012;11:974–89.CrossRefPubMedGoogle Scholar
  4. 4.
    Abdulhasan MK, Li Q, Dai J, Abu-Soud HM, Puscheck EE, Rappolee DA. CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death. J Assist Reprod Genet. 2017;34:1595–607.CrossRefPubMedGoogle Scholar
  5. 5.
    Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, et al. Two-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and stemness by commonly used fertility drugs, a diet supplement, and stress. J Assist Reprod Genet. 2017;34:1609–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, et al. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet. 2016;33:1027–39.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA. Stress induces AMPK-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells. Stem Cells Dev. 2013;22:1564–75.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calder MD, Edwards NA, Betts DH, Watson AJ. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice. Mol Hum Reprod. 2017;23:771–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Li Q, Yang Y, Louden E, Puscheck E, Rappolee D. High throughput screens for embryonic stem cells: stress-forced potency-stemness loss enables toxicological assays. In: Faqi A, ed. Methods in toxicology and pharmacology: Springer, 2016.Google Scholar
  10. 10.
    Pikiou O, Vasilaki A, Leondaritis G, Vamvakopoulos N, Messinis IE. Effects of metformin on fertilisation of bovine oocytes and early embryo development: possible involvement of AMPK3-mediated TSC2 activation. Zygote. 2015;23:58–67.CrossRefPubMedGoogle Scholar
  11. 11.
    Li Q, Gomez-Lopez N, Drewlo S, Sanchez-Rodriguez E, Dai J, Puscheck EE, et al. Development and validation of a Rex1-RFP potency activity reporter assay that quantifies stress-forced potency loss in mouse embryonic stem cells. Stem Cells Dev. 2016;25:320–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci. 2015;9:235.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bertoldo MJ, Guibert E, Faure M, Rame C, Foretz M, Viollet B, et al. Specific deletion of AMP-activated protein kinase (alpha1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS One. 2015;10:e0119680.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bertoldo MJ, Faure M, Dupont J, Froment P. Impact of metformin on reproductive tissues: an overview from gametogenesis to gestation. Ann Transl Med. 2014;2:55.PubMedPubMedCentralGoogle Scholar
  15. 15.
    LaRosa C, Downs SM. Stress stimulates AMP-activated protein kinase and meiotic resumption in mouse oocytes. Biol Reprod. 2006;74:585–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Downs SM, Chen J. Induction of meiotic maturation in mouse oocytes by adenosine analogs. Mol Reprod Dev. 2006;73:1159–68.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen J, Hudson E, Chi MM, Chang AS, Moley KH, Hardie DG, et al. AMPK regulation of mouse oocyte meiotic resumption in vitro. Dev Biol. 2006;291:227–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Louden ED, Luzzo KM, Jimenez PT, Chi T, Chi M, Moley KH. TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin. Reprod Fertil Dev. 2014;27:31–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ratchford AM, Chang AS, Chi MM, Sheridan R, Moley KH. Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes. Am J Physiol Endocrinol Metab. 2007;293:E1198–206.CrossRefPubMedGoogle Scholar
  20. 20.
    Eng GS, Sheridan RA, Wyman A, Chi MM, Bibee KP, Jungheim ES, et al. AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations. Diabetes. 2007;56:2228–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Dattilo M, Giuseppe D, Ettore C, Menezo Y. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet. J Assist Reprod Genet. 2016;33:1633–48.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Duranteau L, Lefevre P, Jeandidier N, Simon T, Christin-Maitre S. Should physicians prescribe metformin to women with polycystic ovary syndrome PCOS? Ann Endocrinol (Paris). 2010;71:25–7.CrossRefGoogle Scholar
  23. 23.
    Palomba S, Pasquali R, Orio F Jr, Nestler JE. Clomiphene citrate, metformin or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review of head-to-head randomized controlled studies and meta-analysis. Clin Endocrinol. 2009;70:311–21.CrossRefGoogle Scholar
  24. 24.
    Sinawat S, Buppasiri P, Lumbiganon P, Pattanittum P. Long versus short course treatment with metformin and clomiphene citrate for ovulation induction in women with PCOS. Cochrane Database Syst Rev. 2008:CD006226.Google Scholar
  25. 25.
    Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev 2012:CD003053.Google Scholar
  26. 26.
    Lord JM, Flight IH, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ. 2003;327:951–3.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013;56:1898–906.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yilmaz M, Biri A, Karakoc A, Toruner F, Bingol B, Cakir N, et al. The effects of rosiglitazone and metformin on insulin resistance and serum androgen levels in obese and lean patients with polycystic ovary syndrome. J Endocrinol Investig. 2005;28:1003–8.CrossRefGoogle Scholar
  29. 29.
    Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110:255–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Jamal A, Milani F, Al-Yasin A. Evaluation of the effect of metformin and aspirin on utero placental circulation of pregnant women with PCOS. Iran J Reprod Med. 2012;10:265–70.PubMedPubMedCentralGoogle Scholar
  31. 31.
    de Oliveira Baraldi C, Lanchote VL, de Jesus Antunes N, de Jesus Ponte Carvalho TM, Dantas Moises EC, Duarte G, et al. Metformin pharmacokinetics in nondiabetic pregnant women with polycystic ovary syndrome. Eur J Clin Pharmacol. 2011;67:1027–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Vause TD, Cheung AP, Sierra S, Claman P, Graham J, Guillemin JA, et al. Ovulation induction in polycystic ovary syndrome. J Obstet Gynaecol Can. 2010;32:495–502.CrossRefPubMedGoogle Scholar
  33. 33.
    Jungheim ES, Odibo AO. Fertility treatment in women with polycystic ovary syndrome: a decision analysis of different oral ovulation induction agents. Fertil Steril. 2010;94:2659–64.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Genazzani AD, Ricchieri F, Lanzoni C. Use of metformin in the treatment of polycystic ovary syndrome. Women's Health (Lond Engl). 2010;6:577–93.CrossRefGoogle Scholar
  35. 35.
    Palomba S, Falbo A, Russo T, Orio F, Tollino A, Zullo F. Role of metformin in patients with polycystic ovary syndrome: the state of the art. Minerva Ginecol. 2008;60:77–82.PubMedGoogle Scholar
  36. 36.
    Escobar-Morreale HF. Polycystic ovary syndrome: treatment strategies and management. Expert Opin Pharmacother. 2008;9:2995–3008.CrossRefPubMedGoogle Scholar
  37. 37.
    Moll E, van der Veen F, van Wely M. The role of metformin in polycystic ovary syndrome: a systematic review. Hum Reprod Update. 2007;13:527–37.CrossRefPubMedGoogle Scholar
  38. 38.
    Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356:551–66.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheang KI, Sharma ST, Nestler JE. Is metformin a primary ovulatory agent in patients with polycystic ovary syndrome? Gynecol Endocrinol. 2006;22:595–604.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336:918–22.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55:224–36.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Le HT, Schaldach CM, Firestone GL, Bjeldanes LF. Plant-derived 3,3′-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem. 2003;278:21136–45.CrossRefPubMedGoogle Scholar
  44. 44.
    Li Y, Li X, Guo B. Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010;70:646–54.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen D, Banerjee S, Cui QC, Kong D, Sarkar FH, Dou QP. Activation of AMP-activated protein kinase by 3,3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One. 2012;7:e47186.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11:554–65.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Drahota Z, Palenickova E, Endlicher R, Milerova M, Brejchova J, Vosahlikova M, et al. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol Res. 2014;63:1–11.PubMedGoogle Scholar
  50. 50.
    Bridges HR, Jones AJ, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 2014;462:475–87.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cao J, Meng S, Chang E, Beckwith-Fickas K, Xiong L, Cole RN, et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289:20435–46.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14:887–95.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rojas J, Chavez-Castillo M, Bermudez V. The role of metformin in metabolic disturbances during pregnancy: polycystic ovary syndrome and gestational diabetes mellitus. Int J Reprod Med. 2014;2014(797681):1–14.Google Scholar
  54. 54.
    Kovo M, Kogman N, Ovadia O, Nakash I, Golan A, Hoffman A. Carrier-mediated transport of metformin across the human placenta determined by using the ex vivo perfusion of the placental cotyledon model. Prenat Diagn. 2008;28:544–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Banerjee P, Bhonde RR, Pal R. Diverse roles of metformin during peri-implantation development: revisiting novel molecular mechanisms underlying clinical implications. Stem Cells Dev. 2013;22:2927–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Wu Y, Viana M, Thirumangalathu S, Loeken MR. AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia. 2012;55:245–54.CrossRefPubMedGoogle Scholar
  57. 57.
    Lautatzis ME, Goulis DG, Vrontakis M. Efficacy and safety of metformin during pregnancy in women with gestational diabetes mellitus or polycystic ovary syndrome: a systematic review. Metab Clin Exp. 2013;62:1522–34.CrossRefPubMedGoogle Scholar
  58. 58.
    Fantus IG. Is metformin ready for prime time in pregnancy? Probably not yet. Diabetes Metab Res Rev. 2015;31:36–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci U S A. 2004;101:11707–12.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, et al. The DNA sequence and biology of human chromosome 19. Nature. 2004;428:529–35.CrossRefPubMedGoogle Scholar
  61. 61.
    Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr. 2014;34:31–55.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dupont J, Reverchon M, Bertoldo MJ, Froment P. Nutritional signals and reproduction. Mol Cell Endocrinol. 2014;382:527–37.CrossRefPubMedGoogle Scholar
  64. 64.
    Bolnick A, Awonuga AO, Yang Y, Abdulhasan M, Xie Y, Zhou S, et al. Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress. J Assist Reprod Genet. 2017;34:1251–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Rich PR. The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans. 2003;31:1095–105.CrossRefPubMedGoogle Scholar
  66. 66.
    Secor E, Froment P, Louden E, Bolnick A, Yang Y, Abdulhasan M et al. AMPK agonists in diet supplements and Pharma mediate wide-ranging maternal and reproductive effects. eCAM 2018;Submitted.Google Scholar
  67. 67.
    Lissa D, Senovilla L, Rello-Varona S, Vitale I, Michaud M, Pietrocola F, et al. Resveratrol and aspirin eliminate tetraploid cells for anticancer chemoprevention. Proc Natl Acad Sci U S A. 2014;111:3020–5.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    O'Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, et al. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem J. 2015;469:177–87.CrossRefPubMedGoogle Scholar
  69. 69.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yang Y, Bolnick A, Shamir A, Abdulhasan M, Li Q, Parker GC, et al. Blastocyst-derived stem cell populations under stress: impact of nutrition and metabolism on stem cell potency loss and miscarriage. Stem Cell Rev. 2017;13:454–64.CrossRefPubMedGoogle Scholar
  71. 71.
    Christianson MS, Wu H, Zhao Y, Yemini M, Leong M, Shoham Z. Metformin use in patients undergoing in vitro fertilization treatment: results of a worldwide web-based survey. J Assist Reprod Genet. 2015;32:401–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292:504–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Martin KL, Leese HJ. Role of glucose in mouse preimplantation embryo development. Mol Reprod Dev. 1995;40:436–43.CrossRefPubMedGoogle Scholar
  74. 74.
    Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548:112–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313.CrossRefPubMedGoogle Scholar
  77. 77.
    Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99:87–95.CrossRefPubMedGoogle Scholar
  78. 78.
    Javed MH, Wright RW Jr. Determination of pentose phosphate and Embden-Meyerhof pathway activities in bovine embryos. Theriogenology. 1991;35:1029–37.CrossRefPubMedGoogle Scholar
  79. 79.
    O'Fallon JV, Wright RW Jr. Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos. Biol Reprod. 1986;34:58–64.CrossRefPubMedGoogle Scholar
  80. 80.
    Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev. 2014;23:3049–64.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhong W, Xie Y, Abdallah M, Awonuga AO, Slater JA, Sipahi L, et al. Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction. 2010;140:921–30.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Chae HD, Lee MR, Broxmeyer HE. 5-Aminoimidazole-4-carboxyamide ribonucleoside induces G(1)/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells. 2012;30:140–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Mansouri L, Xie Y, Rappolee DA. Adaptive and pathogenic responses to stress by stem cells during development. Cell. 2012;1:1197–224.CrossRefGoogle Scholar
  84. 84.
    Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J. 2015;468:125–32.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kohonen P, Benfenati E, Bower D, Ceder R, Crump M, Cross K, et al. The ToxBank data warehouse: supporting the replacement of in vivo repeated dose systemic toxicity testing. Mol Inform. 2013;32:47–63.CrossRefPubMedGoogle Scholar
  86. 86.
    Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev. 2007;74:1345–53.CrossRefPubMedGoogle Scholar
  88. 88.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elizabeth E. Puscheck
    • 1
  • Alan Bolnick
    • 1
    • 2
  • Awoniyi Awonuga
    • 1
  • Yu Yang
    • 1
    • 3
  • Mohammed Abdulhasan
    • 1
  • Quanwen Li
    • 1
  • Eric Secor
    • 4
  • Erica Louden
    • 5
  • Maik Hüttemann
    • 6
  • Daniel A. Rappolee
    • 1
    • 3
    • 6
    • 7
    • 8
    • 9
    Email author
  1. 1.CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and InfertilityWayne State University School of MedicineDetroitUSA
  2. 2.Department of Obstetrics and GynecologyKaleida Women’s and Children’s Hospital Buffalo New YorkBuffaloUSA
  3. 3.Department of PhysiologyWayne State University School of MedicineDetroitUSA
  4. 4.Department of Medicine, Integrative MedicineHartford Hospital and University of ConnecticutHartfordUSA
  5. 5.Augusta University of Health SciencesAugustaUSA
  6. 6.Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA
  7. 7.Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  8. 8.Institutes for Environmental Health ScienceWayne State University School of MedicineDetroitUSA
  9. 9.Department of BiologyUniversity of WindsorWindsorCanada

Personalised recommendations