Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 6, pp 1039–1046 | Cite as

Mode of conception does not affect fetal or placental growth parameters or ratios in early gestation or at delivery

  • Lauren W. Sundheimer
  • Jessica L. Chan
  • Rae Buttle
  • Rosemarie DiPentino
  • Olivia Muramoto
  • Kerlly Castellano
  • Erica T. Wang
  • John WilliamsIII
  • Margareta D. Pisarska
Assisted Reproduction Technologies

Abstract

Purpose

Ratio of fetal weight to placenta size varies by mode of conception (fertility treatments utilized) in animals. Our objective was to assess whether fertility treatments also affect these ratios in humans.

Methods

In this retrospective study, we assessed two cohorts: (a) early gestation cohort, women with singleton pregnancies who underwent first trimester vaginal ultrasound and (b) delivered cohort, women who delivered a live-born, singleton infant with placenta disposition to pathology. Crown rump length (CRL) and estimated placental volume (EPV) were calculated from first trimester ultrasound images using a validated computation. Infant birth weight (BW), pregnancy data, placental weight (PW), and placental histopathology were collected. Fetal growth-to-placental weight ratios (CRL/EPV; BW/PW) and placentas were compared by mode of conception. Linear regression was used to adjust for confounding variables.

Results

Two thousand one hundred seventy patients were included in the early gestation cohort and 1443 in the delivered cohort. Of the early gestation cohort (a), 85.4% were spontaneous conceptions, 5.9% Non-IVF Fertility (NIFT), and 8.7% IVF. In the delivered cohort (b), 92.4% were spontaneous, 2.1% NIFT, and 80 5.5% IVF. There were no significant differences between fetal growth-to-placental weight parameters, ratios, and neonatal birth measurements based on mode of conception. Placenta accreta was significantly higher in the patients receiving fertility treatments (1.2 versus 3.6%, p < 0.05).

Conclusions

Mode of conception does not appear to influence fetal growth-to-placental weight ratios throughout gestation. In addition, findings in animal models may not always translate into human studies of infertility treatment outcomes.

Keywords

Fertility treatment Crown rump length Estimated placental volume Birth weight Placental weight 

Notes

Funding information

This study was funded through the National Institutes of Health (R01HD074368).

Compliance with ethical standards

The Institutional Review Board of Cedars-Sinai Medical Center in Los Angeles approved the study.

References

  1. 1.
    Centers for Disease Control and Prevention. Fertility Clinic Success Rates Report. Retrieved from https://www.cdcgov/art/artdata/indexhtml 2015.
  2. 2.
    Schieve LA, Devine O, Boyle CA, Petrini JR, Warner L. Estimation of the contribution of non-assisted reproductive technology ovulation stimulation fertility treatments to US singleton and multiple births. Am J Epidemiol. 2009;170:1396–407.CrossRefPubMedGoogle Scholar
  3. 3.
    Klemetti R, Gissler M, Sevon T, Koivurova S, Ritvanen A, Hemminki E. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84(5):1300–7.  https://doi.org/10.1016/j.fertnstert.2005.03.085.CrossRefPubMedGoogle Scholar
  4. 4.
    Shevell T, Malone FD, Vidaver J, Porter TF, Luthy DA, Comstock CH, et al. Assisted reproductive technology and pregnancy outcome. Obstet Gynecol. 2005;106(5 Pt 1):1039–45.  https://doi.org/10.1097/01.AOG.0000183593.24583.7c.CrossRefPubMedGoogle Scholar
  5. 5.
    Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63.  https://doi.org/10.1097/01.aog.0000114989.84822.51.CrossRefPubMedGoogle Scholar
  6. 6.
    Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004;21(12):437–43.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30.  https://doi.org/10.1056/NEJMoa010035.CrossRefPubMedGoogle Scholar
  8. 8.
    Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359(9305):461–5.  https://doi.org/10.1016/S0140-6736(02)07674-2.CrossRefPubMedGoogle Scholar
  9. 9.
    Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.  https://doi.org/10.1056/NEJMoa010806.CrossRefPubMedGoogle Scholar
  10. 10.
    Verlaenen H, Cammu H, Derde MP, Amy JJ. Singleton pregnancy after in vitro fertilization: expectations and outcome. Obstet Gynecol. 1995;86(6):906–10.  https://doi.org/10.1016/0029-7844(95)00322-I.CrossRefPubMedGoogle Scholar
  11. 11.
    Kroener L, Wang ET, Pisarska MD. Predisposing factors to abnormal first trimester placentation and the impact on fetal outcomes. Semin Reprod Med. 2016;34(1):27–35.CrossRefPubMedGoogle Scholar
  12. 12.
    Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25:2039–46.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS, Petraglia F, et al. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology. 2012;153:3457–67.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155:1956–69.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnson MR, Riddle AF, Grudzinskas JG, Sharma V, Collins WP, Nicolaides KH. Reduced circulating placental protein concentrations during the first trimester are associated with preterm labour and low birth weight. Hum Reprod. 1993;8:1942–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Plasencia W, Akolekar R, Dagklis T, Veduta A, Nicolaides KH. Placental volume at 11-13 weeks’ gestation in the prediction of birth weight percentile. Fetal Diagn Ther. 2011;30:23–8.CrossRefPubMedGoogle Scholar
  17. 17.
    David AL, Jauniaux E. Ultrasound and endocrinological markers of first trimester placentation and subsequent fetal size. Placenta. 2016;40:29–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Hafner E, Metzenbauer M, Stumpflen I, Waldhor T. Measurement of placental bed vascularization in the first trimester, using 3D-power-Doppler, for the detection of pregnancies at-risk for fetal and maternal complications. Placenta. 2013;34:892–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34:745–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Hafner E, Metzenbauer M, Stumpflen I, Waldhor T, Philipp K. First trimester placental and myometrial blood perfusion measured by 3D power Doppler in normal and unfavourable outcome pregnancies. Placenta. 2010;31:756–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Savasi VM, Mandia L, Laoreti A, Ghisoni L, Duca P, Cetin I. First trimester placental markers in oocyte donation pregnancies. Placenta. 2015;36(8):921–5.CrossRefPubMedGoogle Scholar
  22. 22.
    de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015;24(24):6975–85.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Churchill SJWE, Akhlaghpour M, Goldstein EH, Eschevarria D, Greene N, Macer M, et al. Mode of conception does not appear to affect placental volume in the first trimester. Fertil Steril. 2017;107(6):1341–7. e1CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rifouna MS, Reus AD, Koning AH, van der Spek PJ, Exalto N, Steegers EA, et al. First trimester trophoblast and placental bed vascular volume measurements in IVF or IVF/ICSI pregnancies. Hum Reprod. 2014;29:2644–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Jauniaux E, Englert Y, Vanesse M, Hiden M, Wilkin P. Pathologic features of placentas from singleton pregnancies obtained by in vitro fertilization and embryo transfer. Obstet Gynecol. 1990;76(1):61–4.PubMedGoogle Scholar
  26. 26.
    Gavriil P, Jauniaux E, Leroy F. Pathologic examination of placentas from singleton and twin pregnancies obtained after in vitro fertilization and embryo transfer. Pediatr Pathol. 1993;13(4):453–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Poon LC, Karagiannis G, Leal A, Romero XC, Nicolaides KH. Hypertensive disorders in pregnancy: screening by uterine artery Doppler imaging and blood pressure at 11–13 weeks. Ultrasound Obstet Gynecol. 2009;34(5):497–502.CrossRefPubMedGoogle Scholar
  28. 28.
    Schuchter K, Metzenbauer M, Hafner E, Philipp K. Uterine artery Doppler and placental volume in the first trimester in the prediction of pregnancy complications. Ultrasound Obstet Gynecol. 2001;18(6):590–2.CrossRefPubMedGoogle Scholar
  29. 29.
    Reus AD, El-Harbachi H, Rousian M, Willemsen SP, Steegers-Theunissen RP, Steegers EA, et al. Early first-trimester trophoblast volume in pregnancies that result in live birth or miscarriage. Ultrasound Obstet Gynecol. 2013;42(5):577–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Azpurua H, Funai EF, Coraluzzi LM, Doherty LF, Sasson IE, Kliman M, et al. Determination of placental weight using two-dimensional sonography and volumetric mathematic modeling. Am J Perinatol. 2010;27:151–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Schwartz N, Sammel MD, Leite R, Parry S. First-trimester placental ultrasound and maternal serum markers as predictors of small-for-gestational-age infants. Am J Obstet Gynecol. 2014;211:253.e1–8.CrossRefGoogle Scholar
  32. 32.
    Schwartz N, Wang E, Parry S. Two-dimensional sonographic placental measurements in the prediction of small-for-gestational-age infants. Ultrasound Obstet Gynecol. 2012;40:674–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Hafner E, Philipp T, Schuchter K, Dillinger-Paller B, Philipp K, Bauer P. Second-trimester measurements of placental volume by three-dimensional ultrasound to predict small-for-gestational-age infants. Ultrasound Obstet Gynecol. 1998;12:97–102.CrossRefPubMedGoogle Scholar
  34. 34.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503.CrossRefPubMedGoogle Scholar
  35. 35.
    McDonald SD, Han Z, Mulla S, Murphy KE, Beyene J, Ohlsson A. Knowledge synthesis group. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol. 2009;46(2):138–48.CrossRefGoogle Scholar
  36. 36.
    Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Williams LA, Evans SF, Newnham JP. Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ. 1997;314(7098):1864–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bukowski R, Hansen NI, Pinar H, Willinger M, Reddy UM, Parker CB, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) stillbirth collaborative research network (SCRN). Altered fetal growth, placental abnormalities, and stillbirth. PLoS One. 2017;12(8):e0182874.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chang YL, Chang SD, Chao AS, Hsieh PC, Wang CN, Tseng LH. The individual fetal weight/estimated placental weight ratios in monochorionic twins with selective growth restriction. Prenat Diagn. 2008;28(3):217–21.CrossRefPubMedGoogle Scholar
  40. 40.
    Souza MA, de Lourdes Brizot M, Biancolin SE, Schultz R, de Carvalho MHB, Francisco RPV, et al. Placental weight and birth weight to placental weight ratio in monochorionic and dichorionic growth-restricted and non-growth-restricted twins. Clinics (Sao Paulo). 2017;72(5):265–71.CrossRefGoogle Scholar
  41. 41.
    Gloria-Bottini F, Neri A, Coppeta L, Magrini A, Bottini E. Correlation between birth weight and placental weight in healthy and diabetic puerperae. Taiwan J Obstet Gynecol. 2016;55(5):697–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Risnes KR, Romundstad PR, Nilsen TI, Eskild A, Vatten LJ. Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am J Epidemiol. 2009;170:622e31.CrossRefGoogle Scholar
  43. 43.
    Shehata F, Levin I, Shrim A, Ata B, Weisz B, Gamzu R, et al. Placenta/birth weight ratio and perinatal outcome: a retrospective cohort analysis. BJOG. 2011;118(6):741–7.CrossRefPubMedGoogle Scholar
  44. 44.
    van Uitert EM, van der Elst-Otte N, Wilbers JJ, Exalto N, Willemsen SP, Eilers PH, et al. Periconception maternal characteristics and embryonic growth trajectories: the Rotterdam Predict study. Hum Reprod. 2013;28(12):3188–96.CrossRefPubMedGoogle Scholar
  45. 45.
    Esh-Broder E, Ariel I, Abas-Bashir N, Bdolah Y, Celnikier DH. Placenta accreta is associated with IVF pregnancies: a retrospective chart review. BJOG. 2011;118:1084–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Fitzpatrick KE, Sellers S, Spark P, Kurinczuk JJ, Brocklehurst P, Knight M. Incidence and risk factors for placenta accreta/increta/percreta in the UK: a national case-control study. PLoS One. 2012;7:e52893.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hayashi M, Nakai A, Satoh S, Matsuda Y. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil Steril. 2012;98:922–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Ishishara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson G. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.CrossRefGoogle Scholar
  49. 49.
    Kaser DJ, Melamed A, Bormann CL, Myers DE, Missmer SA, Walsh BW, et al. Cryopreserved embryo transfer is an independent risk factor for placenta accreta. Fertil Steril. 2015;103(5):1176–84.e2.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lauren W. Sundheimer
    • 1
    • 2
  • Jessica L. Chan
    • 1
  • Rae Buttle
    • 1
  • Rosemarie DiPentino
    • 1
  • Olivia Muramoto
    • 1
  • Kerlly Castellano
    • 1
  • Erica T. Wang
    • 1
    • 2
  • John WilliamsIII
    • 2
    • 3
  • Margareta D. Pisarska
    • 1
    • 2
  1. 1.Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and InfertilityCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Obstetrics and Gynecology, Division of Maternal Fetal MedicineCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations