Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 6, pp 1113–1121 | Cite as

Impact of high magnification sperm selection on neonatal outcomes: a retrospective study

  • Olivier Gaspard
  • Pierre Vanderzwalmen
  • Barbara Wirleitner
  • Stéphanie Ravet
  • Frédéric Wenders
  • Verena Eichel
  • Alice Mocková
  • Dietmar Spitzer
  • Caroline Jouan
  • Virginie Gridelet
  • Henri Martens
  • Laurie Henry
  • Herbert Zech
  • Sophie Perrier d’Hauterive
  • Michelle Nisolle
Assisted Reproduction Technologies



The aim of this study was to compare the effect of the deselection of spermatozoa presenting vacuole-like structures using IMSI (intracytoplasmic morphologically selected sperm injection) with ICSI (intracytoplasmic sperm injection) by means of neonatal outcomes.


In a retrospective two-center analysis, a total of 848 successful IMSI or ICSI cycles ending with a live birth, induced abortion, or intrauterine fetal death (IUFD) were included.


The IMSI and ICSI groups included 332 and 655 babies or fetuses, respectively. The parents were older in the IMSI group than in the ICSI group (mothers were 35.1 vs 32.9 years, and fathers were 39.1 vs 36.2 years). The multiple pregnancy rate was higher in the IMSI group. The mean pregnancy duration and mean birth weight were almost identical in both groups. There was no significant difference in major congenital malformations between the two groups. However, this rate was decreased in the IMSI group compared to that in the ICSI group (1.8 vs 3.2%), the difference being mainly found in singletons (1.4 vs 3.3%). Boys were more often affected than girls in both groups. The percentages of chromosomal abnormalities did not differ between the IMSI and ICSI groups (0.6 and 0.8%). The reported congenital malformations mainly affected the heart, urogenital, and musculoskeletal systems.


In the present study, the malformation rates observed in the IMSI and ICSI groups were not significantly different, even if slightly lower after IMSI. However, the observed difference followed the same trends observed in previous reports, indicating the possible impact of IMSI on decreasing congenital malformation occurrences. This highlights the necessity to prospectively evaluate the impact of IMSI on neonatal outcome after IVF treatment.


Vacuole-like structures Intracytoplasmic morphologically selected sperm injection Major congenital malformations Neonatal outcomes Spermatozoa selection 



The authors thank Dr S Bulk from the Department of Genetics (Centre Hospitalier Universitaire de Liège) in Belgium for her help regarding the analysis of the babies’ neonatal data.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    David G, Bisson J, Czyglik F, Jouannet P, Gernigo N. Anomalies morphologiques du spermatozoïde humain. (1) Propositions pour un système de classification. J Gynecol Obstet Biol Reprod. 1975;4:17–36.Google Scholar
  2. 2.
    Kruger T, Menkveld R, Stander F, Lombard C, Van der Merwe J, van Zyl J, et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46:1118–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345:1067–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Tanaka A, Nagayoshi M, Tanaka I, Kusunoki H. Human sperm head vacuoles are physiological structures formed during the sperm development and maturation process. Fertil Steril. 2012;98:315–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Garolla A, Fortini D, Menegazzo M, De Toni L, Nicoletti V, Moretti A, et al. High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod BioMed Online. 2008;17:610–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Boitrelle F, Ferfouri F, Petit JM, Segretain D, Tourain C, Bergere M, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26:1650–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Boitrelle F, Albert M, Petit JM, Ferfouri F, Wainer R, Bergere M, et al. Small human sperm vacuoles observed under high magnification are pocket-like nuclear concavities linked to chromatin condensation failure. Reprod BioMed Online. 2013;27:201–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Franco JG, Baruffi RLR, Mauri AL, Petersen CG, Oliveira JBA, Vagnini L. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod BioMed Online. 2008;17:42–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26:47–58.CrossRefPubMedGoogle Scholar
  11. 11.
    Cassuto NG, Hazout A, Hammoud I, Balet R, Bouret D, Barak Y, et al. Correlation between DNA defect and sperm-head morphology. Reprod BioMed Online. 2012;24:211–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Franco Jr JG, Mauri AL, Petersen CG, Massaro FC, Silva LFI, Felipe V, et al. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl. 2011;35:46–51.CrossRefGoogle Scholar
  13. 13.
    Cassuto NG, Montjean D, Siffroi J, Bouret D, Marzouk F, Copin H, et al. Different levels of DNA methylation detected in human sperms after morphological selection using high magnification microscopy. Biomed Res Int Hindawi Publishing Corporation. 2016;2016:1–7.CrossRefGoogle Scholar
  14. 14.
    Wilding M, Coppola G, di Matteo L, Palagiano A, Fusco E, Dale B. Intracytoplasmic injection of morphologically selected spermatozoa (IMSI) improves outcome after assisted reproduction by deselecting physiologically poor quality spermatozoa. J Assist Reprod Genet. 2011;28:253–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Hammoud I, Boitrelle F, Ferfouri F, Vialard F, Bergere M, Wainer B, et al. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia. 2013;45:163–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Utsuno H, Oka K, Yamamoto A, Shiozawa T. Evaluation of sperm head shape at high magnification revealed correlation of sperm DNA fragmentation with aberrant head ellipticity and angularity. Fertil Steril. 2013;99:1573–1580.e1.CrossRefPubMedGoogle Scholar
  17. 17.
    Komiya A, Kato T, Kawauchi Y, Watanabe A, Fuse H. Clinical factors associated with sperm DNA fragmentation in male patients with infertility. ScientificWorldJournal. 2014;2014:868303.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Garolla A, Sartini B, Cosci I, Pizzol D, Ghezzi M, Bertoldo A, et al. Molecular karyotyping of single sperm with nuclear vacuoles identifies more chromosomal abnormalities in patients with testiculopathy than fertile controls: implications for ICSI. Hum Reprod. 2015;30:2493–500.CrossRefPubMedGoogle Scholar
  19. 19.
    Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod BioMed Online. 2008;17:617–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Cassuto NG, Bouret D, Plouchart JM, Jellad S, Vanderzwalmen P, Balet R, et al. A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality. Fertil Steril. 2009;92:1616–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Knez K, Zorn B, Tomazevic T, Vrtacnik-Bokal E, Virant-Klun I. The IMSI procedure improves poor embryo development in the same infertile couples with poor semen quality: a comparative prospective randomized study. Reprod Biol Endocrinol. 2011;9:123.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Knez K, Tomazevic T, Vrtacnik-Bokal E, Virant-Klun I. Developmental dynamics of IMSI-derived embryos: a time-lapse prospective study. Reprod BioMed Online. 2013;27:161–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Neyer A, Zintz M, Stecher A, Bach M, Wirleitner B, Zech NH, et al. The impact of paternal factors on cleavage stage and blastocyst development analyzed by time-lapse imaging—a retrospective observational study. J Assist Reprod Genet. 2015;32:1607–14.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Berkovitz A, Eltes F, Ellenbogen A, Peer S, Feldberg D, Bartoov B. Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome? Hum Reprod. 2006;21:1787–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Berkovitz A, Eltes F, Lederman H, Peer S, Ellenbogen A, Feldberg B, et al. How to improve IVF-ICSI outcome by sperm selection. Reprod BioMed Online. 2006;12:634–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Kim HJ, Yoon HJ, Jang JM, Oh HS, Lee YJ, Lee WD, et al. Comparison between intracytoplasmic sperm injection and intracytoplasmic morphologically selected sperm injection in oligo-asthenoteratozoospermia patients. Clin Exp Reprod Med. 2014;41:9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shalom-Paz E, Anabusi S, Michaeli M, Karchovsky-Shoshan E, Rothfarb N, Shavit T, et al. Can intra cytoplasmatic morphologically selected sperm injection (IMSI) technique improve outcome in patients with repeated IVF-ICSI failure? A comparative study. Gynecol Endocrinol. 2015;31:247–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Hazout A, Dumont-Hassan M, Junca A-M, Bacrie PC, Tesarik J. High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online. Reproductive Healthcare Ltd, Duck End Farm, Dry Drayton, Cambridge CB23 8DB, UK; 2006;12:19–25.Google Scholar
  30. 30.
    Antinori M, Licata E, Dani G, Cerusico F, Versaci C, D’Angelo D, et al. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod BioMed Online. 2008;16:835–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Klement AH, Koren-Morag N, Itsykson P, Berkovitz A. Intracytoplasmic morphologically selected sperm injection versus intracytoplasmic sperm injection: a step toward a clinical algorithm. Fertil Steril. 2013;99:1290–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Setti AS, Figueira RCS, Braga DPAF, Aoki T, Iaconelli A, Borges E. Intracytoplasmic morphologically selected sperm injection is beneficial in cases of advanced maternal age: a prospective randomized study. Eur J Obstet Gynecol Reprod Biol. 2013;171:286–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Knez K, Tomazevic T, Zorn B, Vrtacnik-Bokal E, Virant-Klun I. Intracytoplasmic morphologically selected sperm injection improves development and quality of preimplantation embryos in teratozoospermia patients. Reprod BioMed Online. 2012;25:168–79.CrossRefPubMedGoogle Scholar
  34. 34.
    Cassuto NG, Hazout A, Bouret D, Balet R, Larue L, Benifla JL, et al. Low birth defects by deselecting abnormal spermatozoa before ICSI. Reprod BioMed Online. 2014;28:47–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Hershko-Klement A, Sukenik-Halevy R, Biron Shental T, Miller N, Berkovitz A. Intracytoplasmic morphologically selected sperm injection and congenital birth defects: a retrospective cohort study. Andrology. 2016;4:887–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Pinborg A, Henningsen A-KA, Malchau SS, Loft A. Congenital anomalies after assisted reproductive technology. Fertil Steril. 2013;99:327–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Sö derström-Anttila V, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19:87–104.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ. 2006;333:679.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tararbit K, Lelong N, Thieulin a-C, Houyel L, Bonnet D, Goffinet F, et al. The risk for four specific congenital heart defects associated with assisted reproductive techniques: a population-based evaluation. Hum Reprod. 2013;28:367–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Chaabane S, Sheehy O, Monnier P, Bissonnette F, Trasler JM, Fraser W, et al. Ovarian stimulators, intrauterine insemination, and assisted reproductive technologies use and the risk of major congenital malformations—the AtRISK study. Dev Reprod Toxicol. 2016;107:136–47.Google Scholar
  42. 42.
    Harris BS, Bishop KC, Kemeny HR, Walker JS, Rhee E, Kuller JA. Risk factors for birth defects. Benjamin Obstet Gynecol Surv. 2017;72:123–35.CrossRefGoogle Scholar
  43. 43.
    Loane M, Dolk H, Morris JK. Maternal age-specific risk of non-chromosomal anomalies. BJOG An Int J Obstet Gynaecol. 2009;116:1111–9.CrossRefGoogle Scholar
  44. 44.
    Nybo Andersen A-M, Urhoj SK. Is advanced paternal age a health risk for the offspring? Fertil Steril. 2017;107:312–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Sokal R, Tata LJ, Fleming KM. Sex prevalence of major congenital anomalies in the United Kingdom: a national population-based study and international comparison meta-analysis. Birth Defects Res A Clin Mol Teratol. 2014;100:79–91.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y, et al. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012;97:1331–1337.e4.CrossRefPubMedGoogle Scholar
  47. 47.
    Silver R, Rodriguez R, Chang T, Gearhart J. In vitro fertilization is associated with an increased risk of hypospadias. J Urol. 1999;161:1954–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Fauser BCJM, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de Waal HA, et al. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod BioMed Online. 2014;28:162–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36–42.CrossRefPubMedGoogle Scholar
  50. 50.
    Barratt CLR, Aitken RJ, Björndahl L, Carrell DT, De Boer P, Kvist U, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications-a position report. Hum Reprod. 2010;25:824–38.CrossRefPubMedGoogle Scholar
  51. 51.
    Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139:287–301.CrossRefPubMedGoogle Scholar
  52. 52.
    Tavalaee M, Razavi S, Nasr-Esfahani MH. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril. 2009;91:1119–26.CrossRefPubMedGoogle Scholar
  53. 53.
    Oliva R, Luís Ballescà J. Altered histone retention and epigenetic modifications in the sperm of infertile men. Asian J Androl. 2012;14:239–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet. 2012;3:1–8.CrossRefGoogle Scholar
  55. 55.
    Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2007;2:e1289.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schagdarsurengin U, Paradowska A, Steger K. Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol. 2012;9:609–19.CrossRefPubMedGoogle Scholar
  57. 57.
    Feinberg JI, Bakulski KM, Jaffe AE, Tryggvadottir R, Brown SC, Goldman LR, et al. Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol. 2015;44:1199–210.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009;17:1582–91.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Olivier Gaspard
    • 1
  • Pierre Vanderzwalmen
    • 2
  • Barbara Wirleitner
    • 2
  • Stéphanie Ravet
    • 1
  • Frédéric Wenders
    • 1
  • Verena Eichel
    • 2
  • Alice Mocková
    • 3
  • Dietmar Spitzer
    • 4
  • Caroline Jouan
    • 1
  • Virginie Gridelet
    • 1
    • 5
  • Henri Martens
    • 5
  • Laurie Henry
    • 1
  • Herbert Zech
    • 2
    • 4
  • Sophie Perrier d’Hauterive
    • 1
  • Michelle Nisolle
    • 1
  1. 1.Centre de Procréation Médicalement Assistée – ULiègeCentre Hospitalier Universitaire de LiègeLiègeBelgium
  2. 2.IVF-Centers Prof. ZechBregenzAustria
  3. 3.Department of Neonatology, Faculty of Medicine in Pilsen and University HospitalCharles University in PraguePragueCzech Republic
  4. 4.IVF-Centers Prof. ZechSalzburgAustria
  5. 5.GIGA I3, Center of ImmunoendocrinologyUniversity of LiègeLiègeBelgium

Personalised recommendations