Skip to main content

Advertisement

Log in

Oocyte cryopreservation for women with GATA2 deficiency

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To describe controlled ovarian stimulation (COS) in a population of women with GATA2 deficiency, a genetic bone marrow failure syndrome, prior to allogeneic hematopoietic stem cell transplant

Methods

This is a retrospective case series of nine women with GATA2 deficiency who underwent oocyte preservation at a research institution. Main outcomes measured include baseline fertility characteristics ((antimullerian hormone (AMH) and day 3 follicle-stimulating hormone (FSH) and estradiol (E2)) and total doses of FSH and human menopausal gonadotropins (HMG), E2 on day of trigger, and total number of metaphase II oocytes retrieved.

Results

The mean age was 24 years [16–32], mean AMH was 5.2 ng/mL [0.7–10], and day 3 mean FSH was 5.1 U/L [0.7–8.1], and E2 was 31.5 pg/mL [< 5–45]. The mean dose of FSH was 1774 IU [675–4035], and HMG was 1412 IU [375–2925] with a mean E2 of 2267 pg/mL [60.7–4030] on day of trigger. The mean total of metaphase II oocytes was 7.7 [0–15]. One patient was diagnosed with a deep vein thrombosis (DVT) with pulmonary embolism (PE) during COS.

Conclusion

This study is the first to analyze the outcomes of COS in women with GATA2 deficiency. The response to ovarian stimulation suggests that oocyte cryopreservation should be considered prior to gonadotoxic therapy. However, due to the risk of potentially life-threatening complications, it is prudent that patients are properly counseled of the risks and are evaluated by a multi-disciplinary medical team prior to COS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Holme H, Hossain U, Kirwan M, Walne A, Vulliamy T, Dokal I. Marked genetic heterogeneity in familial myelodysplasia/acute myeloid leukaemia. Br J Haematol. 2012;158(2):242–8.

    Article  PubMed  CAS  Google Scholar 

  3. Vinh DC, Patel SY, Uzel G, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118(13):3715–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kaur J, Catovsky D, Valdimarsson H, Jensson O, Spiers AS. Familial acute myeloid leukaemia with acquired Pelger-Huet anomaly and aneuploidy of C group. Br Med J. 1972;4(5836):327–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hsu AP, Johnson KD, Falcone EL, et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood. 2013;121(19):3830–7. s3831-3837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kazenwadel J, Secker GA, Liu YJ, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neoplasms. Semin Hematol. 2017;54(2):81–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387–97. quiz 1518

    Article  PubMed  CAS  Google Scholar 

  11. Apperley JF, Reddy N. Mechanism and management of treatment-related gonadal failure in recipients of high dose chemoradiotherapy. Blood Rev. 1995;9(2):93–116.

    Article  PubMed  CAS  Google Scholar 

  12. Joshi S, Savani BN, Chow EJ, et al. Clinical guide to fertility preservation in hematopoietic cell transplant recipients. Bone Marrow Transplant. 2014;49(4):477–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rubel CA, Wu SP, Lin L, et al. A Gata2-dependent transcription network regulates uterine progesterone responsiveness and endometrial function. Cell Rep. 2016;17(5):1414–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Charles MA, Saunders TL, Wood WM, et al. Pituitary-specific Gata2 knockout: effects on gonadotrope and thyrotrope function. Molecular endocrinology (Baltimore, Md). 2006;20(6):1366–77.

    Article  CAS  Google Scholar 

  15. Ma GT, Roth ME, Groskopf JC, et al. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development (Cambridge, England). 1997;124(4):907–14.

    CAS  Google Scholar 

  16. Woodruff TK. The Oncofertility consortium—addressing fertility in young people with cancer. Nat Rev Clin Oncol. 2010;7(8):466–75.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertility and sterility. 2013;100(5):1214–1223.

  18. Partridge AH, Gelber S, Peppercorn J, et al. Web-based survey of fertility issues in young women with breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2004;22(20):4174–83.

    Article  Google Scholar 

  19. Treves R, Grynberg M, Parco S, Finet A, Poulain M, Fanchin R. Female fertility preservation in cancer patients: an instrumental tool for the envisioning a postdisease life. Future Oncol (London, England). 2014;10(6):969–74.

    Article  CAS  Google Scholar 

  20. Hansen AT, Kesmodel US, Juul S, Hvas AM. No evidence that assisted reproduction increases the risk of thrombosis: a Danish national cohort study. Human Reprod (Oxford, England). 2012;27(5):1499–503.

    Article  CAS  Google Scholar 

  21. Somigliana E, Peccatori FA, Filippi F, Martinelli F, Raspagliesi F, Martinelli I. Risk of thrombosis in women with malignancies undergoing ovarian stimulation for fertility preservation. Hum Reprod Update. 2014;20(6):944–51.

    Article  PubMed  CAS  Google Scholar 

  22. Hansen AT, Kesmodel US, Juul S, Hvas AM. Increased venous thrombosis incidence in pregnancies after in vitro fertilization. Human Reprod (Oxford, England). 2014;29(3):611–7.

    Article  CAS  Google Scholar 

  23. Oktay K, Hourvitz A, Sahin G, et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab. 2006;91(10):3885–90.

    Article  PubMed  CAS  Google Scholar 

  24. Aune B, Hoie KE, Oian P, Holst N, Osterud B. Does ovarian stimulation for in-vitro fertilization induce a hypercoagulable state? Human Reprod (Oxford, England). 1991;6(7):925–7.

    Article  CAS  Google Scholar 

  25. Friedler S, Koc O, Gidoni Y, Raziel A, Ron-El R. Ovarian response to stimulation for fertility preservation in women with malignant disease: a systematic review and meta-analysis. Fertil Steril. 2012;97(1):125–33.

    Article  PubMed  Google Scholar 

  26. Lee JA, Sekhon L, Grunfeld L, Copperman AB. In-vitro maturation of germinal vesicle and metaphase I eggs prior to cryopreservation optimizes reproductive potential in patients undergoing fertility preservation. Curr Opin Obstet Gynecol. 2014;26(3):168–73.

    Article  PubMed  Google Scholar 

  27. Chian RC, Gilbert L, Huang JY, et al. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009;91(2):372–6.

    Article  PubMed  CAS  Google Scholar 

  28. Soderstrom-Anttila V, Salokorpi T, Pihlaja M, Serenius-Sirve S, Suikkari AM. Obstetric and perinatal outcome and preliminary results of development of children born after in vitro maturation of oocytes. Human Reprod (Oxford, England). 2006;21(6):1508–13.

    Article  Google Scholar 

  29. Dello Russo C, Di Giacomo G, Mesoraca A, et al. Next generation sequencing in the identification of a rare genetic disease from preconceptional couple screening to preimplantation genetic diagnosis. J Prenat Med. 2014;8(1–2):17–24.

    Google Scholar 

  30. Lopes R, Sousa M, Silva J, Cunha M, Oliveira C, Teixeira da Silva J, et al. Clinical outcomes after preimplantation genetic diagnosis of patients with Corino de Andrade disease (familial amyloid polyneuropathy). Reprod Biomed Online. 2018;36(1):39–46. https://doi.org/10.1016/j.rbmo.2017.09.010.

  31. Grace J, El-Toukhy T, Scriven P, et al. Three hundred and thirty cycles of preimplantation genetic diagnosis for serious genetic disease: clinical considerations affecting outcome. BJOG : Int J Obstet Gynaecol. 2006;113(12):1393–401.

    Article  CAS  Google Scholar 

  32. Alberola TM, Bautista-Llacer R, Vendrell X, et al. Case report: birth of healthy twins after preimplantation genetic diagnosis of propionic acidemia. J Assist Reprod Genet. 2011;28(3):211–6.

    Article  PubMed  Google Scholar 

  33. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Doyle JO, Richter KS, Lim J, Stillman RJ, Graham JR, Tucker MJ. Successful elective and medically indicated oocyte vitrification and warming for autologous in vitro fertilization, with predicted birth probabilities for fertility preservation according to number of cryopreserved oocytes and age at retrieval. Fertil Steril. 2016;105(2):459–66. e452

    Article  PubMed  Google Scholar 

  35. De Rycke M, Goossens V, Kokkali G, Meijer-Hoogeveen M, Coonen E, Moutou C. ESHRE PGD Consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013. Human Reprod (Oxford, England). 2017;32(10):1974–94.

    Article  Google Scholar 

  36. SART National Clinic Summary Data. 2015. (Accessed at https://sartcorsonline.com).

  37. Merker VL, Murphy TP, Hughes JB, et al. Outcomes of preimplantation genetic diagnosis in neurofibromatosis type 1. Fertil Steril. 2015;103(3):761–8. e761

    Article  PubMed  Google Scholar 

  38. Magklara A, Smith CL. A composite intronic element directs dynamic binding of the progesterone receptor and GATA-2. Mol Endocrinol (Baltimore, Md). 2009;23(1):61–73.

    Article  CAS  Google Scholar 

  39. Lo A, Zheng W, Gong Y, Crochet JR, Halvorson LM. GATA transcription factors regulate LHbeta gene expression. J Mol Endocrinol. 2011;47(1):45–58.

    Article  PubMed  CAS  Google Scholar 

  40. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Embryo cryopreservation rescues cycles with premature luteinization. Fertil Steril. 2010;93(2):636–41.

    Article  PubMed  CAS  Google Scholar 

  41. Bosch E, Valencia I, Escudero E, et al. Premature luteinization during gonadotropin-releasing hormone antagonist cycles and its relationship with in vitro fertilization outcome. Fertil Steril. 2003;80(6):1444–9.

    Article  PubMed  Google Scholar 

  42. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Thomas S. Large blastocyst diameter, early blastulation, and low preovulatory serum progesterone are dominant predictors of clinical pregnancy in fresh autologous cycles. Fertil Steril. 2008;90(2):302–9.

    Article  PubMed  Google Scholar 

  43. Melo MA, Meseguer M, Garrido N, Bosch E, Pellicer A, Remohi J. The significance of premature luteinization in an oocyte-donation programme. Human Reprod (Oxford, England). 2006;21(6):1503–7.

    Article  CAS  Google Scholar 

  44. Yang S, Pang T, Li R, et al. The individualized choice of embryo transfer timing for patients with elevated serum progesterone level on the HCG day in IVF/ICSI cycles: a prospective randomized clinical study. Gynecol Endocrinol: Off J Int Soc Gynecol Endocrinol. 2015;31(5):355–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported, in part, by the Program in Reproductive Endocrinology and Gynecology; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica R. Zolton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolton, J.R., Parikh, T.P., Hickstein, D.D. et al. Oocyte cryopreservation for women with GATA2 deficiency. J Assist Reprod Genet 35, 1201–1207 (2018). https://doi.org/10.1007/s10815-018-1146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1146-0

Keywords

Navigation