Skip to main content
Log in

Key factors enhancing sperm fertilizing ability are transferred from the epididymis to the spermatozoa via epididymosomes in the domestic cat model

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Spermatozoa undergo critical changes in structure and function during the epididymal transit. Our previous studies in the domestic cat demonstrated that incidence of cenexin—a key protein involved in the centrosomal maturation—progressively increases in sperm cells from caput to cauda epididymidis. The objectives of the study were to (1) characterize mechanisms involved in transferring key factors—using the cenexin as a marker—between the epididymis and maturing sperm cells and (2) demonstrate the impact of such mechanisms on the acquisition of functional properties by spermatozoa.

Methods

Epididymides were dissected from adult cat testes to assess the presence and localization of cenexin in testicular tissues and each epididymal segment (caput, corpus, and cauda) via immunofluorescence, Western blot, and mass spectrometry.

Results

Results showed that tissues, luminal fluid, and isolated epididymosomes from each segment contained cenexin. Co-incubation of immature sperm cells for 3 h with luminal fluid or epididymosomes followed by immunostaining revealed that percentages of sperm cells containing cenexin significantly increased in samples co-incubated with epididymosome suspensions. Additionally, epididymosome co-incubation with immature spermatozoa resulted in sustained motility compared to untreated spermatozoa while there was no significant effect on acrosome integrity.

Conclusions

Taken together, these results suggest that epididymosomes play a critical role in epididymal sperm maturation and could be ideal vehicles to assist in the enhancement or suppression of male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dacheux J-L, Belleannée C, Guyonnet B, Labas V, Teixeira-Gomes A-P, Ecroyd H, et al. The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med. 2012;58:197–210. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22788532

    Article  CAS  PubMed  Google Scholar 

  2. Axnér E. Sperm maturation in the domestic cat. Theriogenology. 2006;66:14–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16620928

    Article  PubMed  Google Scholar 

  3. Dacheux J-L, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147:R27–42. Available from: http://www.reproduction-online.org/cgi/doi/10.1530/REP-13-0420

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan R, Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction. 2013;146:R21–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23613619

    Article  CAS  PubMed  Google Scholar 

  5. Nicander L, Malmqvist M. Ultrastructural observations suggesting merocrine secretion in the initial segment of the mammalian epididymis. Cell Tissue Res. 1977;184:487–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/589656

    Article  CAS  PubMed  Google Scholar 

  6. Cooper TG. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl. 1998;53:119–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10645272

    CAS  PubMed  Google Scholar 

  7. Sullivan R, Frenette G, Girouard J. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl. 2007;9:483–91. Available from: http://www.asiaandro.com/Abstract.asp?doi=10.1111/j.1745-7262.2007.00281.x

    Article  CAS  PubMed  Google Scholar 

  8. Kirchhoff C, Hale G. Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol Hum Reprod. 1996;2:177–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9238677

    Article  CAS  PubMed  Google Scholar 

  9. Hermo L, Jacks D. Nature’s ingenuity: bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev. 2002;63:394–410. Available from: http://doi.wiley.com/10.1002/mrd.90023

    Article  CAS  PubMed  Google Scholar 

  10. Fornés MW, Barbieri A, Cavicchia JC. Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis. Andrologia. 27:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7755184

  11. Légaré C, Bérubé B, Boué F, Lefièvre L, Morales CR, El-Alfy M, et al. Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein. Mol Reprod Dev. 1999;52:225–33. Available from: http://doi.wiley.com/10.1002/%28SICI%291098-2795%28199902%2952%3A2%3C225%3A%3AAID-MRD14%3E3.0.CO%3B2-M

    Article  PubMed  Google Scholar 

  12. Frenette G, Sullivan R. Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev. 2001;59:115–21. Available from: http://doi.wiley.com/10.1002/mrd.1013

    Article  CAS  PubMed  Google Scholar 

  13. Thimon V, Koukoui O, Calvo E, Sullivan R. Region-specific gene expression profiling along the human epididymis. Mol Hum Reprod. 2007;13:691–704. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17881722

    Article  CAS  PubMed  Google Scholar 

  14. Morales A, Cavicchia JC. Release of cytoplasmic apical protrusions from principal cells of the cat epididymis, an electron microscopic study. Tissue Cell. 1991;23:505–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1926138

    Article  CAS  PubMed  Google Scholar 

  15. Rowlison T, Ottinger MA, Comizzoli P. Deciphering the mechanisms involving cenexin, ninein and centriolin in sperm maturation during epididymal transit in the domestic cat. Reprod Domest Anim. 2017;52(Suppl 2):193–6. Available from: http://doi.wiley.com/10.1111/rda.12831

    Article  CAS  PubMed  Google Scholar 

  16. Navara CS, First NL, Schatten G. Phenotypic variations among paternal centrosomes expressed within the zygote as disparate microtubule lengths and sperm aster organization: correlations between centrosome activity and developmental success. Proc Natl Acad Sci U S A. 1996;93:5384–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8643584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Comizzoli P, Wildt DE, Pukazhenthi BS. Poor centrosomal function of cat testicular spermatozoa impairs embryo development in vitro after intracytoplasmic sperm injection. Biol Reprod. 2006;75:252–60. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2000476&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LM, et al. Glycolytic enzyme activity is essential for domestic cat (Felis catus) and cheetah (Acinonyx jubatus) sperm motility and viability in a sugar-free medium1. Biol Reprod. 2011;84:1198–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21325689

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa H, Kubo A, Tsukita S, Tsukita S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol. 2005;7:517–24. Available from: http://www.nature.com/doifinder/10.1038/ncb1251

    Article  CAS  PubMed  Google Scholar 

  20. Belleannée C, Da Silva N, Shum WWC, Marsolais M, Laprade R, Brown D, et al. Segmental expression of the bradykinin type 2 receptor in rat efferent ducts and epididymis and its role in the regulation of aquaporin 9. Biol Reprod. 2009;80:134–43. Available from: https://academic.oup.com/biolreprod/article-lookup/doi/10.1095/biolreprod.108.070797

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhen W, Li P, He B, Guo J, Zhang Y-L. The novel epididymis-specific beta-galactosidase-like gene Glb1l4 is essential in epididymal development and sperm maturation in rats. Biol Reprod. 2009;80:696–706. Available from: https://academic.oup.com/biolreprod/article-lookup/doi/10.1095/biolreprod.108.071589

    Article  CAS  PubMed  Google Scholar 

  22. Suryawanshi AR, Khan SA, Joshi CS, Khole VV. Epididymosome-mediated acquisition of MMSDH, an androgen-dependent and developmentally regulated epididymal sperm protein. J Androl. 2012;33:963–74. Available from: http://doi.wiley.com/10.2164/jandrol.111.014753

    Article  CAS  PubMed  Google Scholar 

  23. Hüber D, Hoyer-Fender S. Alternative splicing of exon 3b gives rise to ODF2 and Cenexin. Cytogenet Genome Res. 2007;119:68–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18160784

    Article  PubMed  Google Scholar 

  24. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. Available from: http://www.nature.com/doifinder/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  25. Girouard J, Frenette G, Sullivan R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl. 2011;34:e475–86. Available from: http://doi.wiley.com/10.1111/j.1365-2605.2011.01203.x

    Article  CAS  PubMed  Google Scholar 

  26. Saez F, Frenette G, Sullivan R. Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J Androl. 2003;24:149–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12634297

    Article  PubMed  Google Scholar 

  27. Caballero JN, Frenette G, Belleannée C, Sullivan R. CD9-positive microvesicles mediate the transfer of molecules to bovine spermatozoa during epididymal maturation. Drevet JR, editor. PLoS One 2013;8:e65364. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23785420.

  28. Rawe VY, Terada Y, Nakamura S, Chillik CF, Olmedo SB, Chemes HE. A pathology of the sperm centriole responsible for defective sperm aster formation, syngamy and cleavage. Hum Reprod. 2002;17:2344–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12202423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Brent Whitaker of Animal Rescue Inc. and Dr. Keiko Antoku at Waldorf Well Pet Clinic, as well as all their staff, for their services and donation of domestic cat testes. We would also like to thank Sarah Jacobs for her assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Comizzoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowlison, T., Ottinger, M.A. & Comizzoli, P. Key factors enhancing sperm fertilizing ability are transferred from the epididymis to the spermatozoa via epididymosomes in the domestic cat model. J Assist Reprod Genet 35, 221–228 (2018). https://doi.org/10.1007/s10815-017-1083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1083-3

Keywords

Navigation