Skip to main content
Log in

Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: a review of 1000 cases

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to perform a retrospective analysis of types and frequencies of chromosomal abnormalities detected by conventional cytogenetic studies in first-trimester miscarriages after spontaneous conception and IVF.

Methods

Standard cytogenetic analysis of GTG-banded chromosomes obtained from products of conception (POCs): semi-direct and short-term cultured chorionic villi or long-term cultured fetal mesodermal cells.

Results

50.1% of first-trimester miscarriages in the studied group had chromosomal abnormalities: 59.7% of trisomies, 22% of poliploidies, 7.5% of monosomies, 7% of unbalanced structural abnormalities, and 3.8% of multiple aneuploidies. An increase in the frequency of chromosomally abnormal miscarriages was observed in the group of women above 40 when compared to groups of women under 35 (P < 0.05). No difference in frequencies and types of chromosomal abnormalities in POCs of miscarriages after ICSI and spontaneous conception was observed.

Conclusions

Approximately, 50% of first-trimester miscarriages have chromosomal abnormalities which can be detected by conventional cytogenetic analysis. The presence of chromosomal abnormality may explain the cause of miscarriage, improving the reproductive counseling and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van den Berg MM, van Maarle MC, van Wely M, Goddijn M. Genetics of early miscarriage. Biochim Biophys Acta. 2012;12:1951–9.

    Article  Google Scholar 

  2. Jenderny J. Chromosome aberrations in a large series of spontaneous miscarriages in the German population and review of the literature. Mol Cytogenet. 2014;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu T, Yin B, Zhu Y, Li G, Ye L, et al. Molecular cytogenetic analysis of early spontaneous abortions conceived from varying assisted reproductive technology procedures. Mol Cytogenet. 2016;9:79.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bianco K, Caughey AB, Shaffer BL, Davis R, Norton ME. History of miscarriage and increased incidence of fetal aneuploidy in subsequent pregnancy. Obstet Gynecol. 2006;107:1098–102.

    Article  PubMed  Google Scholar 

  5. Blakemore KJ, Watson MS, Samuelson J, Dreg WR, Mahoney MJ. A method of processing first-trimester chorionic villous biopsies for cytogenetic analysis. Am J Hum Genet. 1984;36:1386–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang YX, Zhang YP, Gu Y, Guan FG, Li SL, et al. Genetic analysis of first-trimester miscarriages with a combination of cytogenetic karyotyping, microsatellite genotyping and arrayCGH. Clin Genet. 2009;75:133–40.

    Article  CAS  PubMed  Google Scholar 

  7. Dhillon RK, Hillman SC, Morris RK, McMullan D, Williams D, et al. Additional information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG. 2014;121:11–21.

    Article  CAS  PubMed  Google Scholar 

  8. Shimokawa O, Harada N, Miyake N, Satoh K, Mizuguchi T. Array comparative genomic hybridization analysis in first-trimester spontaneous abortions with 'normal' karyotypes. Am J Med Genet A. 2006;140:1931–5.

    Article  PubMed  Google Scholar 

  9. Lin SB, Xie YJ, Chen Z, Zhou Y, JZ W, et al. Improved assay performance of single nucleotide polymorphism array over conventional karyotyping in analyzing products of conception. J Chin Med Assoc. 2015;78:408–13.

    Article  PubMed  Google Scholar 

  10. Sahoo T, Dzidic N, Strecker MN, Commander S, Travis MK, et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med. 2017;19:83–9.

    Article  CAS  PubMed  Google Scholar 

  11. Rajcan-Separovich E. Chromosome microarrays in human reproduction. Hum Reprod Update. 2012;18:555–67.

    Article  Google Scholar 

  12. Shetty S, Gogate A, Gogate S, Malet P. A reproducible modified method for direct preparation of chorionic villi cytogenetic analysis. Methods Cell Sci. 2003;25:149–54.

    Article  PubMed  Google Scholar 

  13. Rooney D. Human cytogenetics: constitutional analysis. A practical approach. 3rd ed. Oxford: University Press; 2001.

    Google Scholar 

  14. Doria S, Carvalho F, Ramalho C, Lima V, Francisco T, et al. An efficient protocol for the detection of chromosomal abnormalities in spontaneous miscarriages or foetal deaths. Eur J Obstet Gynecol Reprod Biol. 2009;147:144–50.

    Article  CAS  PubMed  Google Scholar 

  15. Kroon B, Harrison K, Martin N, Wong B, Yazdani A. Miscarriage karyotype and its relationship with maternal body mass index, age and mode of conception. Fertil Steril. 2011;95:1827–9.

    Article  PubMed  Google Scholar 

  16. Petracchi F, Colaci DS, Igarzabal L, Gadow E. Cytogenetic analysis of first trimester pregnancy loss. Int J Gynaecol Obstet. 2009;104:243–4.

    Article  PubMed  Google Scholar 

  17. Choi TY, Lee HM, Park WK, Jeong SY, Moon HS. Spontaneous abortion and recurrent miscarriage: a comparison of cytogenetic diagnosis in 250 cases. Obstet Gynecol Sci. 2014;57:518–25.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shearer BM, Thorland EC, Carlson AW, Jalal SM, Ketterling RP. Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: a retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization. Genet Med. 2011;13:545–52.

    Article  PubMed  Google Scholar 

  19. Lathi RB, Milki AA. Rate of aneuploidy in miscarriages following in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2004;81:1270–2.

    Article  PubMed  Google Scholar 

  20. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from f 12-year study. Genet Med. 2005;7:251–63.

    Article  PubMed  Google Scholar 

  21. Rodriguez-Purata J, Lee J, Whitehouse M, Moschini RM, Knopman J, et al. Embryo selection versus natural selection: how do outcomes of comprehensive chromosome screening of blastocysts compare with the analysis of products of conception from early pregnancy loss (dilation and curettage) among an assisted reproductive technology population? Fertil Steril. 2015;104:1460–6.

    Article  PubMed  Google Scholar 

  22. Lomax B, Tang S, Separovic E, Phillips D, Hillard E, et al. Comparative genomic hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet. 2000;66:1516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subramaniyam S, Pulijaal VR, Mathew S. Double and multiple chromosomal aneuploidies in spontaneous abortions: a single institutional experience. 2014:7;262–268.

  24. Bettio D, Venci A, Levi Setti PE. Chromosomal abnormalities in miscarriages after different assisted reproduction procedures. Placenta. 2008; Suppl B:126–8.

  25. Demko ZP, Simon AL, McCoy RC, Petrov DA, Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertil Steril. 2016;105:1307–13.

    Article  CAS  PubMed  Google Scholar 

  26. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2011;101:656–63.

    Article  Google Scholar 

  27. Wang Y, Cheng Q, Meng L, Luo C, Hu H, et al. Clinical application of SNP array analysis in first-trimester pregnancy loss: a prospective study. Clin Genet. 2016; https://doi.org/10.1111/cge.12926.

  28. Lathi RB, Gustin S, Keller J, Maisenbacher MK, Siqurjonsson S, et al. Reability of 46,XX results on miscarriage specimens: a review of 1,222 first trimester miscarriage specimens. Fertil Steril. 2014;101:178–82.

    Article  PubMed  Google Scholar 

  29. Neusser M, Rogenhofer N, Dürl S, Ochsenkühn R, Trottmann M. Increased chromosome 16 disomy rates in human spermatozoa and recurrent spontaneous abortions. Fertil Steril. 2015;104:1130–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nagaishi M, Yamamoto T, Iinuma K, Shimomura K, Berend SA, et al. Chromosome abnormalities identified in 347 spontaneous abortions collected in Japan. J Obstet Gynaecol Res. 2004;30:237–41.

    Article  PubMed  Google Scholar 

  31. Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, et al. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132:1001–13.

    Article  PubMed  Google Scholar 

  32. Pellestor F, Anahory T, Hamamah S. The chromosomal analysis of human oocytes. An overview of established procedures. Hum Reprod Update. 2005;11:15–32.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor TD, Noguchi H, Totoki Y, Toyoda A, Kuroki Y, et al. Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature. 2006;440:497–500.

    Article  CAS  PubMed  Google Scholar 

  34. Hassold T, Arnovitz K, Jacobs PA, May K, Robinson D. The parental origin of the missing or additional chromosome in 45,X and 47,XXX females. Birth Defects Orig Artic Ser. 1990;26:297–304.

    CAS  PubMed  Google Scholar 

  35. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanism and new insights into age-old problem. Nat Rev Genet. 2013;13:493–504.

    Article  Google Scholar 

  36. Hassold T, Hunt P. To err (meiotically) is human: the genetics of human aneuploidy. Nat Rev Genet. 2001;2:280–91.

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Hassed S, Mulvihill JJ, Nair AK, Hopcus DJ. Double trisomy. AJMG. 2004;124A:96–8.

    Article  Google Scholar 

  38. Qy L, Tsukishiro S, Nakagawa C, Tanemura M, Sugiura-Ogasawa M, et al. Paternal origin and cell stage of non-disjunction of double trisomy in spontaneous abortion. Congenit Anom (Kyoto). 2005;45:21–5.

    Article  Google Scholar 

  39. Bernardini L, Gianaroli L, Fortini D, Conte N, Magli C, et al. Frequency of hyper-, hypohaploidy and diplody in ejaculate, epididymal and testicular germ cells of infertile patients. Hum Reprod. 2000;15:2165–72.

    Article  CAS  PubMed  Google Scholar 

  40. Durak Aras B, Aras I, Can C, Topak C, Dikogly E, et al. Exploring the relationship between the severity of oligozoospermia and the frequencies of sperm chromosome aneuploidies. Andrologia. 2012;44:416–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larysa Y. Pylyp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pylyp, L.Y., Spynenko, L.O., Verhoglyad, N.V. et al. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: a review of 1000 cases. J Assist Reprod Genet 35, 265–271 (2018). https://doi.org/10.1007/s10815-017-1069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1069-1

Keywords

Navigation